
HABILITATION À DIRIGER DES RECHERCHES DE

L’UNIVERSITÉ DE BRETAGNE OCCIDENTALE

ÉCOLE DOCTORALE NO 644
Mathématiques et Sciences et Technologies
de l’Information et de la Communication en Bretagne Océane
Spécialité : Informatique

Par

Pascal COTRET
Contributions à la sécurité à la frontière logicielle - matérielle

Habilitation à Diriger des Recherches présentée et soutenue
à l’Université de Bretagne Occidentale, le 27 novembre 2025
Unité de recherche : Lab-STICC

Rapporteurs avant soutenance :

Aurélien FRANCILLON Professeur, Eurecom (Sophia)
Régis LEVEUGLE Professeur, TIMA (Grenoble)
Jean-Christophe PREVOTÉT Professeur, INSA (Rennes)

Composition du Jury :

Président·e : David ESPES Professeur, Lab-STICC (Brest)
Examinateur·trice·s : Lilian BOSSUET Professeur, Hubert-Curien (Saint-Étienne)

Steven DERRIEN Professeur, Lab-STICC (Brest)
Guy GOGNIAT Professeur, Lab-STICC (Lorient)

UNIVERSITÉ DE BRETAGNE OCCIDENTALE

ÉCOLE DOCTORALE MATHSTIC
Mathématiques et Sciences et Technologies de l’Information et de la

Communication

Habilitation à diriger des
recherches

de l’Université de Bretagne Occidentale
Présentée et soutenue par

Pascal Cotret

Contributions à la sécurité à la
frontière logicielle - matérielle

soutenue le 27 novembre 2025

Jury :

Rapporteurs : Aurélien Francillon EURECOM, Sophia Antipolis
Régis Leveugle TIMA, Grenoble
Jean-Christophe Prévotet IETR, Rennes

Examinateurs : Lilian Bossuet Hubert-Curien, St-Étienne
Steven Derrien Lab-STICC, Brest
David Espes Lab-STICC, Brest
Guy Gogniat Lab-STICC, Lorient

Table des matières

1 Introduction 1
1.1 Introduction . 1
1.2 Structure du manuscrit . 2

2 Contributions à la sécurité hybride logiciel - matériel 5
2.1 HardBlare . 5

2.1.1 Introduction au Dynamic Information Flow Tracking
(Dynamic Information Flow Tracking (DIFT)) 5

2.1.2 Approches logicielles-matérielles pour le DIFT 7
2.1.3 HardBlare : une approche DIFT pour ARM 9
2.1.4 Évaluation et résultats . 14

2.2 Protection de machines virtuelles embarquées pour RISC-V . . . 15
2.2.1 Introduction sur les VMs et leur sécurité 15
2.2.2 Gigue : un générateur de logiciels 18
2.2.3 JITDomain : une protection par le matériel 20

2.3 Conclusion et perspectives . 25

3 Contributions aux architectures matérielles sécurisées 27
3.1 Protection d’une IOMMU . 27

3.1.1 Contexte du projet . 27
3.1.2 Sécurité des accès mémoire avec IOMMU dans un envi-

ronnement RISC-V . 29
3.1.3 État de l’art . 30
3.1.4 Plateforme expérimentale 33

3.2 Définition d’architectures d’IA pour de la détection d’intrusion . 35
3.2.1 Contexte du projet . 35
3.2.2 L’intelligence artificielle au service de la détection d’in-

trusions . 36
3.2.3 Accélération de fonctions de Machine Learning 37

3.3 Conclusion et perspectives . 39

4 Contributions sur la sécurité au niveau micro-architecture 41
4.1 Protection des mémoires caches contre les timing attacks 41

4.1.1 Micro-architecture d’un système embarqué 41
4.1.2 Contexte du projet SCRATCHS 44
4.1.3 lock/unlock, un mécanisme de verrouillage de lignes de

cache . 45

ii Table des matières

4.1.4 Une solution “hybride” . 50
4.2 Protection des mémoires avec l’introduction de TEE 52

4.2.1 Problématique . 52
4.2.2 Environnements d’exécution sécurisés pour architecture

RISC-V . 53
4.2.3 Solution envisagée . 55

4.3 Conclusion et perspectives . 56

5 Conclusion et perspectives 57
5.1 Conclusion . 57
5.2 Perspectives . 58

Liste d’abréviations 61

Annexes 65

A Informations complémentaires 67
A.1 CV résumé . 67
A.2 Liste des thèses co-encadrées . 67
A.3 Jurys et expertises . 69
A.4 Responsabilités scientifiques . 70
A.5 Responsabilités administratives . 71
A.6 Synthèse des enseignements . 72

Bibliographie 74

Publications 94

Table des figures

1.1 Chronologie des thèses encadrées. 3

2.1 Architecture logicielle d’un système embarqué. 6
2.2 Code C et code IFT associé. 6
2.3 Architecture in-core (figure adaptée de [7]). 7
2.4 Architecture off-loading (figure adaptée de [7]). 8
2.5 Architecture off-core (figure adaptée de [7]). 8
2.6 Control-Flow Graph (CFG) simplifié du code C présenté dans le

Listing 2.1. 12
2.7 Composants CoreSight dans un SoC Zynq. Le chemin en rouge

indique le parcours suivi par les traces de debug. 13
2.8 Architecture interne de ARMHex avec le processeur ARM dans la

partie Processing System (PS) et le coprocesseur DIFT ARMHEx
dans la partie Programmable Logic (PL). 14

2.9 Schéma synthétique d’une machine virtuelle. Figure adaptée de
[18]. 16

2.10 Développement de code jitté pour un processeur embarqué. Le
symbole rond représente les instructions additionnelles qui se-
raient rajoutées pour une extension de sécurité. 18

2.11 Environnement de test pour Gigue à destination des processeurs
RISC-V Rocket et CVA6. 19

2.12 Génération des classes d’application. 20
2.13 Taux d’exécution sur RISC-V . 21
2.14 Configuration domaines CSRs . 22
2.15 Surcoûts en cycles et en CPI (applications call). 23
2.16 Surcoûts en cycles et en CPI (applications memory). 24

3.1 Architecture générale de la passerelle. 28
3.2 Architecture du System-on-Chip (SoC) utilisé dans cette étude :

sans et avec Input Output Memory Management Unit (IOMMU). 30
(a) Sans IOMMU . 30
(b) Avec IOMMU . 30

3.3 Scénario d’exploitation : Usurpation de l’identifiant du périphé-
rique (Device ID Spoofing) et accès mémoire non autorisé. 32
(a) Les requêtes DMA de deux Hardware Accelerators (HAs)

distincts. 32

iv Table des figures

(b) Malicious Hardware Accelerator (MHA) qui échoue à accé-
der à la région mémoire du Legitimate Hardware Accelera-
tor (LHA). 32

(c) MHA qui usurpe l’identité du LHA en volant son identifiant
et en accédant à sa région mémoire. 32

3.4 Scénario d’exploitation : Usurpation de l’identifiant du périphé-
rique (Device ID Spoofing) et accès mémoire non autorisé (1)
Les requêtes DMA de deux HAs distincts (2) MHA qui échoue à
accéder à la région mémoire du LHA (3) MHA qui usurpe l’iden-
tité du LHA en volant son identifiant et en accédant à sa région
mémoire. 33

3.5 Intégration d’un MHA dans un SoC TrustGW. 33

4.1 Architecture d’un SoC basée sur le processeur CV32E40P avec
un niveau de cache. 42

4.2 Cache associatif à N voies. 43
4.3 Modèle de menaces. 45
4.4 Cas d’étude. 46
4.5 Cartographie des résultats d’attaques en caches menées sur AES-

128. 49
(a) Première ronde, clé=0xFF. 49
(b) Première ronde, clé=0x42. 49
(c) Deuxième ronde, clé=0x42. 49
(d) S-Box verrouillée en cache, clé=0x42. 49

4.6 Schéma bloc du cache hybride implémentant le mécanisme de
verrouillage. 51

Liste des tableaux

2.1 Comparaison avec des travaux existants. 9
2.2 Comparaison avec des approches existantes. 15
2.3 Surcoût en performance de JITDomain (call) 23
2.4 Surcoût en performance de JITDomain (memory) 24
2.5 Résultats d’implémentation de JITDomain pour un processeur

RISC-V CVA6 non modifié (baseline) et la version avec l’implé-
mentation de JITDomain. 25

4.1 Résulats de synthèse pour un Field Programmable Gate Array
(FPGA) Kintex-7. 48

4.2 Comparaison avec d’autres solutions existantes. 49
4.3 Résultats de surface post-implémentation sur FPGA Kintex-7. . 51
4.4 Comparaison non exhaustive de Trusted Execution Environments

(TEEs) pour l’architecture RISC-V (adapté de [105]). 54

A.1 Synthèse des charges d’enseignements. 72
A.2 Synthèse par matière. 72

Liste des listings

2.1 Exemple de code C pour DIFT. 10
2.2 Trace décodée de la fonction main présentée dans le listing 2.1. . 10

4.1 Exemple d’utilisation des instructions lock et unlock. 47
4.2 Code assembleur de la macro de verrouillage lock_macro. 47

Chapitre 1

Introduction

Sommaire
1.1 Introduction . 1
1.2 Structure du manuscrit . 2

1.1 Introduction
Ce mémoire d’habilitation à diriger des recherches porte sur mon activité

d’enseignant-chercheur qui a eu lieu à CentraleSupélec sur le campus de Rennes
entre 2014 et 2017 et à l’ENSTA sur le campus de Brest depuis la rentrée sco-
laire 2019. À la suite de mon doctorat obtenu en décembre 2012 à l’Université
de Bretagne-Sud, j’ai effectué un séjour d’ATER à l’ENSSAT Lannion puis un
séjour postdoctoral au CEA LIST à Saclay.

La Figure 1.1 présente une chronologie des différents projets de recherche et
des différentes thèses encadrées depuis mon arrivée à CentraleSupélec à la rentrée
2014. Entre mes expériences à CentraleSupélec et l’ENSTA, j’ai travaillé chez
Thales sur un poste de développeur embarqué, mais j’ai pu maintenir une acti-
vité de recherche sur mon temps libre pour continuer l’encadrement des thèses
initiées à CentraleSupélec. Des informations complémentaires sont disponibles
en Annexe A.

Mes premières activités de recherche se focalisaient sur un problème de pro-
tection des architectures reconfigurables FPGA : comment peut-on proposer une
solution flexible et performante pour des attaques visant les mémoires d’un sys-
tème embarqué ? Une solution a été proposée avec un algorithme de chiffrement
et des mécanismes matériels de protection des communications internes à l’ar-
chitecture implémentée sur le circuit qui apportaient une certaine flexibilité sur
les propriétés de confidentialité et d’intégrité ainsi qu’un système de filtres au
niveau du bus de communication pour une protection en quasi-temps réel avec
une capacité de reconfiguration des règles de sécurité.

Avec l’avènement des architectures dites hétérogènes comprenant un proces-
seur “en dur” (le plus souvent basé sur l’architecture ARM) et un circuit re-
configurable de type FPGA, mes activités de recherche se sont dirigées vers des

2 1. Introduction

problématiques où le matériel et le logiciel peuvent être associés pour proposer
des solutions de sécurité originales.

Plus récemment, l’architecture de jeu d’instructions open-source RISC-V a
apporté un nouvel élan à la sécurité embarquée grâce à sa modularité qui permet
de proposer des jeux d’instructions complémentaires et des implémentations de
processeurs sécurisés à différents niveaux. Mes travaux de recherches s’articulent
sont désormais majoritairement autour de ce type d’architectures.

1.2 Structure du manuscrit
Le manuscrit présente dans un premier temps une synthèse des différentes

contributions qui ont été abordées dans les projets visibles dans la Figure 1.1.
La suite du manuscrit n’est pas organisée de manière chronologique, mais plutôt
thématique. Mes différents travaux de recherche traitent majoritairement de cy-
bersécurité avec l’utilisation et l’étude des architectures reconfigurables FPGA
comme point commun dans un contexte “hybride” où le logiciel et le matériel
ont tous les deux leur importance. L’articulation des chapitres principaux de
ce manuscrit suit une approche descendante de la cybersécurité des systèmes
embarqués :
● Le Chapitre 2 décrit deux contributions où la sécurité est à la frontière

entre le logiciel et le matériel. Les travaux présentés s’intéressent à des
architectures complexes qui peuvent prendre deux formes : 1) un proces-
seur généraliste associé à un coprocesseur dédié à garantir la sécurité d’un
code qui s’exécute sur un processeur généraliste non modifiable ; 2) une
modification du pipeline d’un processeur pour sécuriser du code compilé à
la volée dans un contexte utilisant des machines virtuelles embarquées.
● Le Chapitre 3 présente quant à lui les contributions dans lesquelles on

développe des extensions matérielles à un niveau d’abstraction plus élevé.
Dans la Section 3.1, la sécurité est étudiée au niveau de l’architecture du
système sur puce. La Section 3.2 s’intéresse à la façon dont on peut optimi-
ser l’implémentation d’algorithmes d’intelligence artificielle sur des com-
posants FPGA pour réaliser de la détection d’intrusions dans un contexte
de cyberdéfense navale.
● Le Chapitre 4 présente les contributions où la sécurité se situe au niveau

de la microarchitecture du système embarqué, ce qui est le cas des deux
thèses mentionnées dans cette partie où on s’intéresse principalement aux
fuites ayant lieu dans les mémoires cache des processeurs. Là aussi, la
sécurité aura un impact sur la couche logicielle (compilateur, services de
sécurité) et sur la couche matérielle (extensions nécessaires pour le bon
fonctionnement du logiciel renforcé).

1.2. Structure du manuscrit 3

H
ard

B
lare

(C
om

in
lab

s)

M
.
A
.
W
ah

ab

M
.
N
asr

A
llah

S
ecu

re
V
M
s
(P

ô
le

d
’E
x
cellen

ce
C
y
b
er)

Q
.
D
u
casse

T
ru
stG

W
(A

N
R
)

A
.
J
en
d
ou

b
i

S
C
R
A
T
C
H
S
(C

o
m
in
lab

s)
P
ostd

o
c

N
.
G
au

d
in

H
W

A
I
fo
r
ID

S
(C

h
a
ire

cy
b
er

n
ava

le)

P
.
G
arreau

S
C
A
M
A

(A
N
R
)

O
.
E
lm

n
aou

ri

L
é
g
e
n
d
e

T
h
èse

so
u
ten

u
e

T
h
èse

en
cou

rs

S
u
p
élec

T
h
ales

E
N
S
T
A

2
0
1
4

2
0
15

20
1
6

2
0
1
7

2018
2019

2020
2021

2022
2023

2024
2025

2026
2027

2028

F
igure

1.1
–

C
hronologie

des
thèses

encadrées.

Chapitre 2

Contributions à la sécurité
hybride logiciel - matériel

Sommaire
2.1 HardBlare . 5

2.1.1 Introduction au Dynamic Information Flow Tracking
(DIFT) . 5

2.1.2 Approches logicielles-matérielles pour le DIFT 7
2.1.3 HardBlare : une approche DIFT pour ARM 9
2.1.4 Évaluation et résultats . 14

2.2 Protection de machines virtuelles embarquées pour
RISC-V . 15
2.2.1 Introduction sur les VMs et leur sécurité 15
2.2.2 Gigue : un générateur de logiciels 18
2.2.3 JITDomain : une protection par le matériel 20

2.3 Conclusion et perspectives . 25

2.1 HardBlare
La Section 2.1 présente une synthèse du projet HardBlare dans lequel nous

avons proposé une approche qui permet de détecter des attaques bas-niveau dans
un logiciel s’exécutant sur un processeur ARM avec une solution qui combine
un composant matériel FPGA et des modifications dans la couche logicielle.

2.1.1 Introduction au Dynamic Information Flow Tra-
cking (DIFT)

Le DIFT est une technique qui se décompose en deux étapes :
● La “coloration” des données par des métadonnées appelées tags (on parlera

aussi dans la suite de l’action de “teinter” des données) et une politique
de sécurité définissant la relation entre ces tags.

6 2. Contributions à la sécurité hybride logiciel - matériel

● La propagation des tags pendant l’exécution du programme ainsi que la
détection des violations de politique de sécurité.

Le DIFT peut être réalisé à différents niveaux qu’on peut identifier dans la
Figure 2.1.

Figure 2.1 – Architecture logicielle d’un système embarqué.

L’Information Flow Tracking (IFT) au niveau applicatif (application-level
IFT) contrôle les flux d’informations entre les variables. L’initialisation, le suivi
et le contrôle des tags sont réalisés dans un compilateur modifié ou en analysant
le programme. La Figure 2.2 présente un exemple de code C et le code de l’IFT
associé.

1 char buffer;
2 int a,b,c;
3 c = a+b;
4 print(c);

1 char tag_a=1,tag_b=0,tag_c=0;
2 tag_c=tag_a|tag_b;
3 if(tag_c==TAG_PRIVATE)
4 print("Secure information being leaked");

Figure 2.2 – Code C et code IFT associé.

Un des problèmes de cette approche est le fait qu’un tag soit associé à chaque
variable du programme, ce qui entraîne un surcoût important à l’exécution.

Pour palier à cela, il existe aussi un IFT au niveau du système d’exploitation
ou Operating System (OS) (OS-level IFT) : dans ce cas, on teinte les fichiers qui
sont manipulés par l’application. Cela réduit la quantité de tags, mais augmente
également la quantité de faux positifs. Parmi les solutions existantes, Histar
[1] est un OS qui a été conçu pour fournir des politiques de sécurité. D’autres
approches telles que Blare [2] modifient l’OS : plus précisément, Blare fournit
un moniteur de flux d’information qu’on peut intégrer dans un noyau Linux qui
va également gérer la lecture et l’écriture des tags.

2.1. HardBlare 7

Dans la Figure 2.1, il existe encore d’autres approches d’IFT :
● Le gate-level IFT se fait au moment de la création du circuit en ajoutant

de la logique matérielle.
● Des environnements de Dynamic Binary Translation (DBT) peuvent être

utilisés pour faire du contrôle de flux d’information [3], [4]. Malheureuse-
ment, ces frameworks engendrent des surcoûts en temps d’exécution trop
importants.

Le low-level IFT va teinter les registres et les adresses mémoire pour déve-
lopper des accélérateurs matériels qui vont diminuer le surcoût lié à l’IFT. C’est
l’approche utilisée dans HardBlare et qui va être détaillée dans la suite de la
Section 2.1.

2.1.2 Approches logicielles-matérielles pour le DIFT
Dans l’article sur la solution Raksha [5], Dalton et al. montrent que les solu-

tions de DIFT logicielles peuvent dégrader le temps d’exécution d’un facteur 37.
Par conséquent, il y a un intérêt naturel à étudier les solutions matérielles qui
permettraient d’accélérer ces traitements. La solution la plus directe est de déve-
lopper un processeur dédié au DIFT comme cela a été fait dans le projet SAFE
[6] : malheureusement, il implique d’avoir une chaîne logicielle spécifique à ce
nouveau composant. D’autres approches proposent de modifier des processeurs
existants et d’y ajouter des fonctions de DIFT, on en distingue trois catégories.

Figure 2.3 – Architecture in-core (figure adaptée de [7]).

L’approche in-core suggère de modifier en profondeur le pipeline du proces-
seur, c’est le cas dans la solution Raksha [5] qui est présentée dans la Figure 2.3
et qui est basée sur l’architecture SPARC. Des tags sont rajoutés au niveau des
mémoires ainsi qu’aux différents étages du processeur pour traiter en parallèle
la donnée ainsi que le tag associé : par exemple, si la donnée est en cours de

8 2. Contributions à la sécurité hybride logiciel - matériel

traitement par l’Arithmetic Logic Unit (ALU), un module traite les tags des
données. Le processeur est modifié de manière assez conséquente. De plus, étant
donné que la solution proposée dans le projet HardBlare visait une architecture
à base de processeur ARM, cette approche n’était pas utilisable dans le contexte
du projet HardBlare.

Figure 2.4 – Architecture off-loading (figure adaptée de [7]).

La deuxième approche, dite off-loading, sépare le traitement DIFT de l’exé-
cution du programme principal en utilisant un deuxième processeur généraliste
(voir Figure 2.4). Les données nécessaires au DIFT sont stockées dans une mé-
moire partagée (un buffer dans le cache L2 dans la Figure 2.4).

Figure 2.5 – Architecture off-core (figure adaptée de [7]).

D’autres solutions, dites off-core, ont implémenté des coprocesseurs dédiés
qui peuvent se greffer à un processeur existant (voir Figure 2.5). L’équipe der-
rière Raksha [5] a proposé en 2009 une évolution de leur solution [7]. L’enjeu

2.1. HardBlare 9

principal de cette solution est l’interface entre le processeur principal et le co-
processeur DIFT : envoyer les informations nécessaires au DIFT requiert de
l’instrumentation et de l’analyse statique et amène un surcoût temporel de 90%
[8].

Deng et al. [9], [10] ont proposé un accélérateur matériel qui peut s’exécuter
jusqu’à 1 GHz ; cependant, il nécessite de nombreuses informations du processeur
principal qui le rend incompatible avec un processeur ARM.

Lee et al. [11] proposent l’idée d’utiliser la Core Debug Interface (CDI) pré-
sente dans leur processeur softcore pour récupérer les informations nécessaires
au DIFT. Il est possible de récupérer les mêmes informations avec le composant
de debug ARM CoreSight Event Trace Macrocell (ETM). Néanmoins, le SoC
Zynq utilisé dans HardBlare n’utilise pas l’ETM mais le Program Trace Ma-
crocell (PTM) qui n’envoie les informations que pour les branchements ou les
interruptions : par conséquent, l’approche présentée dans [11] n’était pas encore
complètement compatible.

2.1.3 HardBlare : une approche DIFT pour ARM
Le Tableau 2.1 présente une comparaison de certaines caractéristiques de

travaux existants. Aucun travail ne s’est appliqué à une architecture ARM. Les
seuls travaux pouvant être compatibles avec un processeur hardcore ([8], [11])
ont été implémenté sur des processeurs softcore.

Table 2.1 – Comparaison avec des travaux existants.

Article Type Type de Cible Portabilité Interface Interface Coprocesseur
d’approche CPU expérimentale hardcore communication simulée isolé

[5] In-core Softcore Leon3 Non Signals N/A Non[12]
[13] Off-loading Softcore Leon3 Non Log buffer Non Non[14] en cache
[7] Off-core Softcore Leon3 Non Signals Non Non[9], [10]
[8] Off-core Softcore Leon3 Oui Bus système Non Non[15]

[11] Off-core Softcore Leon3 Oui CDI Oui Non

ARMHEx Off-core Hardcore ARM Oui EMIO et Non OuiCortex-A9 Bus système

La solution ARMHEx développé dans le cadre du projet HardBlare nécessite
d’extraire des informations s’exécutant sur le processeur ARM afin de pouvoir
effectuer le travail d’analyse dans le composant FPGA.

Le listing 2.1 est un exemple pour illustrer ce qui va être utilisé pour réaliser
le DIFT. Ce programme lit deux fichiers (un public et un privé) et écrit le

10 2. Contributions à la sécurité hybride logiciel - matériel

contenu de l’un des deux dans un troisième fichier selon une condition sur un
nombre aléatoire.

1 int main () {
2 int file_public, file_secret, file_output;
3 char public_buffer [1024];
4 char secret_buffer [1024];
5 char *temporary_buffer;
6 file_public = open("files/public.txt", O_RDONLY);
7 file_secret = open("files/secret.txt", O_RDONLY);
8 file_output = open("files/output.txt", O_WRONLY);
9 read(file_public, public_buffer, 1024);

10 read(file_secret, secret_buffer, 1024);
11 srand(time(NULL));
12 if((rand()%2)==0){
13 temporary_buffer = public_buffer;
14 }
15 else{
16 temporary_buffer = secret_buffer;
17 }
18 write(file_output, temporary_buffer, 1024);
19 return 0;
20 }

Listing 2.1 – Exemple de code C pour DIFT.

Ce code C est compilé en utilisant Low-Level Virtual Machine (LLVM) pour
obtenir un binaire pour l’architecture ARM-v7 (architecture du processeur ARM
visé dans le projet HardBlare). Un graphe de flot de contrôle simplifié est présenté
dans la Figure 2.6. Pour ce code, la trace (autrement dit, les adresses générées
par les composants CoreSight) de la fonction main est affiché dans le listing 2.2.

1 10618 10494 10634 10494 10648 10494 1065c 10464 10678 10464
10690↪

2 1047c 10698 10470 106a4 10458 106a8 106c8 10440 106e4 00000
00000↪

Listing 2.2 – Trace décodée de la fonction main présentée dans le listing 2.1.

2.1. HardBlare 11

Dans le listing 2.2, la première valeur décodée (0x10618) correspond à
l’adresse de départ du premier bloc de base visible dans la Figure 2.6. La va-
leur suivante (0x10494) est la valeur de l’appel de la fonction call. Ensuite,
l’adresse de retour de la fonction call (0x10630+4). Cet exemple montre que la
trace décidée permet de déterminer quel bloc de base est en cours d’exécution.
Comme la trace est générée uniquement pour les instructions qui changement le
flot du programme (telles que des branchements), toutes les autres instructions
ne sont pas tracées : par exemple, les instructions entre les adresses 0x10618 et
0x10630 ne génèrent pas de trace.

Une analyse statique est effectuée hors-ligne pour déterminer les flots d’in-
formations à l’intérieur de chaque bloc de base. Cependant, l’analyse statique ne
permet pas de récupérer toutes les informations : les adresses mémoire utilisées
dans les ldr et les str ne peuvent pas être récupérées statiquement.

Pour récupérer ces adresses, le binaire est instrumenté pendant la compila-
tion avec une passe LLVM. De plus, l’application s’appuie sur des bibliothèques
externes pour tirer profit des appels système et effectuer des opérations spéci-
fiques. Par conséquent, on devrait également récupérer les flux d’information
du code de ces librairies. Quatre étapes permettent de régler ce problème de
visibilité :

1. Une trace obtenue par les composants CoreSight présent dans le proces-
seur ARM du SoC Zynq.

2. Une analyse statique pour comprendre les flux d’information à l’intérieur
des blocs de base.

3. Une instrumentation pour envoyer les adresses mémoire au coprocesseur.
4. Des First In First Outs (FIFOs) dédiées pour la communication entre

l’OS et le coprocesseur DIFT.
La Figure 2.7 présente les composants CoreSight présents dans un Zynq Z-

7020 ainsi que le chemin pris par les traces depuis le processeur jusqu’à l’ETB
accessible par la zone reconfigurable.

On peut classer les composants CoreSight en quatre catégories :
● Contrôle. Contrôle et accès aux composants CoreSight (par exemple, Cross

Trigger Interface (CTI), Cross Trigger Matrix (CTM), Debug Access Port
(DAP) et Embedded Cross Trigger (ECT)). Dans le cadre du projet Hard-
Blare, seul le DAP est utilisé dans sa configuration standard : il permet
d’avoir des ports Advanced Peripheral Bus (APB) pour communiquer avec
plusieurs sources de debug. Il n’est pas présenté dans la Figure 2.7.
● Génération de traces pour les instructions processeur (PTM, Fabric Trace

Monitor (FTM) and Instrucmentation Trace Macrocell (ITM)).
● Lien entre les sources et ports de sortie (funnel and replicator).

12 2. Contributions à la sécurité hybride logiciel - matériel

Figure 2.6 – CFG simplifié du code C présenté dans le Listing 2.1.

2.1. HardBlare 13

Figure 2.7 – Composants CoreSight dans un SoC Zynq. Le chemin en rouge
indique le parcours suivi par les traces de debug.

● Stockage ou export de traces (Embedded Trace Buffer (ETB) et Trace
Port Interface Unit (TPIU)). La trace peut être transmise à une mémoire
interne (l’ETB), le coprocesseur FPGA (par le TPIU) ou même des broches
dédiées.

Ensuite, l’analyse statique peut être réalisée de deux façons :

● Après la compilation en utilisant le désassembleur Capstone : une fois
le binaire désassemblé, Capstone va générer les annotations pour chaque
instruction.
● Pendant la compilation avec le compilateur LLVM. Ce compilateur a

l’avantage de donner plus d’informations qu’un désassembleur et est ca-
pable de générer les flux d’informations de codes obfusqués.

La trace décodée permet de savoir que bloc de base est en cours d’exécution.
L’analyse statique permet de déterminer les flux d’informations dans chaque
bloc de base. Néanmoins, certaines informations ne peuvent pas être déterminées
statiquement. Par exemple, si une instruction de chargement ldr est analysée
statiquement, l’adresse mémoire ne peut pas être calculée. Par conséquent, les
adresses mémoire manquantes pour des ldr et str sont récupérées avec une
instrumentation. Une IP a été développée dans le coprocesseur présent dans la
zone reconfigurable à cet effet.

14 2. Contributions à la sécurité hybride logiciel - matériel

L’architecture globale de la solution est présentée dans la Figure 2.8. On y
trouve : le Program Flow Trace (PFT) decoder qui décode les traces, le ARMHEx
coprocessor qui est le coeur de DIFT à proprement parler et le Tag Register
File (TRF).

Figure 2.8 – Architecture interne de ARMHex avec le processeur ARM dans
la partie PS et le coprocesseur DIFT ARMHEx dans la partie PL.

2.1.4 Évaluation et résultats

La Table 2.2 montre une comparaison entre ARMHEx et les autres approches
off-core présentées précédemment. Contrairement aux autres travaux, ARMHEx
est construit autour d’un processeur ARM hardcore : cela ouvre des perspectives
intéressantes étant donné que ce travail pourra être plus facilement porté sur
des systèmes embarqués existants. Pour ce qui est de la surface, ARMHEx a le
meilleur ratio coprocesseur/processeur, car le processeur utilisé est un Cortex-A9
qui a environ 26 millions de portes [16]. De plus, le surcoût en communication
est 10 fois plus faible que dans [8].

2.2. Protection de machines virtuelles embarquées pour RISC-V 15

Table 2.2 – Comparaison avec des approches existantes.

Approches Kannan Deng Heo ARMHEx[7] [9] [8]
Portabilité hardcore Non Non Oui Oui
Processeur Softcore Softcore Softcore Hardcore
Surcoût communication N/A N/A 60% 5,4%
Surcoût surface 6,4% 14,8% 14,47% 0,47%
Surface (portes) N/A N/A 256177 128496
Surcoût consommation N/A 6,3% 24% 8,45%
Fréquence maximale N/A 256 MHz N/A 250 MHz

2.2 Protection de machines virtuelles embar-
quées pour RISC-V

2.2.1 Introduction sur les VMs et leur sécurité
La sécurité des données dans un système embarqué peut être implémentée à

différents niveaux : dans l’architecture matérielle, dans la couche logicielle (soit
au niveau du système d’exploitation (OS) ou sur le programme qui sera exécuté)
ou alors grâce à des environnements d’exécution spécifiques.

Les machines virtuelles ou Virtual Machines (VMs) dédiées à l’exécution de
code sont une de ces solutions. Il en existe différentes catégories dont on peut
retrouver une description détaillée dans l’ouvrage de Smith et al. [17]. Elles sont
en capacité d’exécuter du code en faisant abstraction des phases de compilation
et d’allocation mémoire : on en retrouve, par exemple, dans Java et Python ou
encore dans les navigateurs web dès lors qu’on veut exécuter du code JavaScript
(par exemple, SpiderMonkey dans Firefox).

La structure générale d’une machine virtuelle est présentée dans la Figure
2.9. On y retrouve principalement quatre composants :
● Le compilateur de bytecode (bytecode compiler). Ce compilateur trans-

forme le code source représenté sous forme d’Abstract Syntax Tree (AST)
en une représentation intermédiaire spécifique à la VM visée : on parle
alors de bytecode.
● L’interpréteur (interpreter) va quant à lui, décoder et analyser ce bytecode

pour exécuter les actions correspondantes.
● Le compilateur Just-in-Time (JIT) va permettre de recompiler pendant

l’exécution une section de bytecode qui peut être vu comme étant “utile”,
car appelée fréquemment. Cette partie de code est elle-même recompilée

16 2. Contributions à la sécurité hybride logiciel - matériel

en une représentation intermédiaire : là où le bytecode est conçu pour être
utilisé par l’interpréteur, la représentation issue du JIT est optimisée pour
le code machine.
● Enfin, le ramasse-miette (ou garbage collector) est quant à lui responsable

des allocations mémoires pour la machine virtuelle.

Figure 2.9 – Schéma synthétique d’une machine virtuelle. Figure adaptée de
[18].

Dans ces VMs, le module responsable de la compilation à la volée est le
compilateur JIT. Les attaques sur les machines virtuelles sont basées sur des
attaques sur du code compilé statiquement et qui tirent profit des opérations bas-
niveau réalisées par le JIT. Ces attaques peuvent être divisées en trois catégories :
● Les attaques par injection de code. Ces attaques, définies dans un article

du magazine Phrack [19] montrent qu’il est possible d’attaquer le système
en manipulant convenablement la pile ou le tas avec des shellcodes.
● Les attaques dites code-reuse. Ces attaques sont plus connues sous la forme

de Return-Oriented Programming (ROP) comme cela a pu être défini dans
un article de Hovav Shacham en 2007 [20] : elles sont généralement pré-
sentes sous la forme de gadgets, des extraits de codes qui finissent par une
instruction de type ret qui permet de pointer sur une adresse mémoire
qui contiendrait un code malveillant à exécuter.

2.2. Protection de machines virtuelles embarquées pour RISC-V 17

● Les attaques dites data-only. Chen et al. parlent de non-control-data at-
tacks [21] qui s’opposent aux control-data attacks où le but de l’attaque est
de modifier les adresses retour ou les pointeurs de fonction pour exécuter du
code malveillant. Les attaques data-only visent les données sensibles d’un
programme (données de configuration, identification d’un utilisateur. . .)

Toutes ces attaques ont pu être appliquées dans des contextes avec des ma-
chines virtuelles [18], [22], [23]. Différents mécanismes de protection ont été pro-
posés, on peut en extraire trois axes principaux :
● Diversification. Comme l’explique Lian et al. [24], ces mécanismes peuvent

se matérialiser sous la forme d’intra-instructions ou de randomisation de
la disposition du code : par exemple, par les registres ou en insérant un
nombre aléatoire d’instructions nop entre des instructions légitimes.
● Protection mémoire. Pour se prémunir des exécutions de code dans la pile,

il est possible de définir des zones mémoire W⊕X [25] ou d’implémenter une
Data Execution Prevention (DEP) [26]. Cependant, le concept de W⊕X est
contradictoire avec l’utilisation d’un JIT qui doit réécrire en permanence
le code machine.
● Restriction des capacités qui consiste à isoler les codes n’étant pas de

confiance. On y trouve par exemple des solutions de Control-Flow Integrity
(CFI) où la politique de sécurité définit un CFG que le programme doit
suivre [27].
● Isolation assistée par le matériel. C’est dans cette catégorie qu’on trouve

les TEEs (par exemple, ARM TrustZone [28], Intel SGX [29] ou Keystone
pour RISC-V [30]) ou les clés de protection mémoire (Memory Protection
Keys (MPKs) [31]). Ces approches permettent, entre autres, d’isoler du
code sensible du reste de l’application.

Les différentes attaques et défenses que nous avons étudiées pendant notre
état de l’art ont été proposées pour différentes architectures telles que ARM, x86
ou RISC-V pour les publications les plus récentes. Dans le cadre des travaux de
thèse de Quentin Ducasse, nous souhaitions faire des modifications à bas niveau
tant sur le logiciel que sur le matériel sur lequel est exécuté la VM. Du fait de la
modularité de son jeu d’instruction et la possibilité de pouvoir l’étendre tout en
conservant une rétrocompatibilité, RISC-V nous parait le choix le plus opportun
pour développer des extensions de sécurité pour des machines virtuelles.

La VM Pharo est une machine virtuelle activement maintenue et utilisée
en production. Elle a été portée sur ARMv8 [32]. Nous avons décidé d’étendre
son compilateur JIT, Cogit, pour prototyper l’ajout d’instructions JIT dans
l’avenir. Dans le cadre de la thèse de Quentin Ducasse, il y a eu une phase de
développement significative pour adapter Pharo sur RISC-V : ce travail n’est pas

18 2. Contributions à la sécurité hybride logiciel - matériel

décrit dans ce manuscrit, mais a été essentiel pour la poursuite des travaux sur ce
sujet. De ces différentes attaques et protection, nous avons voulu répondre à deux
questions : 1 Comment comparer de manière simple ces différentes solutions ?
2 Comment avoir une protection à grain fin (au niveau instruction) avec un
surcoût limité ?

2.2.2 Gigue : un générateur de logiciels

2.2.2.1 Description du fonctionnement

Gigue [33] est un générateur de binaires qui produits des exécutables en
bare-metal qui représente une région de code jitté avec des méthodes remplies
de manière aléatoire. Il s’agit d’un outil très paramétrable qui permet de simuler
différentes complexités de codes jittés pour accélérer le prototypage d’extensions
matérielles comme cela sera le cas dans la Section 2.2.3.

Lorsqu’on propose une extension matérielle pour un processeur RISC-V, des
instructions peuvent être rajoutées. Dans un contexte d’exécution avec une ma-
chine virtuelle, cela voudrait dire qu’il faudrait modifier le système d’exploitation
et le compilateur JIT (symboles en cercle dans la Figure 2.10).

Figure 2.10 – Développement de code jitté pour un processeur embarqué. Le
symbole rond représente les instructions additionnelles qui seraient rajoutées
pour une extension de sécurité.

2.2. Protection de machines virtuelles embarquées pour RISC-V 19

Le code de Gigue est disponible dans un dépôt Github 1 : on peut y para-
métrer plusieurs éléments tels que la taille de la région de code jitté, le nombre
de registres utilisables, le nombre total de méthodes (ainsi que leur taille indivi-
duelle) ou encore le nombre d’appels de fonctions.

Pour le développement de nos extensions matérielles, nous avons étudié deux
processeurs RISC-V : Rocket 2 et CVA6 3. Nous avons donc dû définir un envi-
ronnement de test pour les binaires générés par Gigue, celui-ci est présenté dans
la Figure 2.11.

Figure 2.11 – Environnement de test pour Gigue à destination des processeurs
RISC-V Rocket et CVA6.

Les binaires générés avec Gigue sont exécutés sur des modèles Verilator des
deux processeurs grâce à un framework nommé Toccata 4. Toccata va générer
différents fichiers (en vert dans la Figure 2.11) qui permettent d’avoir des traces
de l’exécution des différents binaires (dump, log et fichiers vcd pouvant être
visualisés avec GTKWave).

2.2.2.2 Résultats

En utilisant Gigue, nous avons essentiellement analysé deux paramètres :
tout d’abord, le nombre d’appels effectués dans une méthode (taux d’occupa-
tion de 1 à 6%) ; puis, le nombre d’accès mémoire (entre 4 et 12% des instructions
seront des load dans les méthodes). De plus, nous faisons varier le nombre de

1. https://github.com/qducasse/gigue
2. https://github.com/chipsalliance/rocket-chip
3. https://github.com/openhwgroup/cva6
4. https://github.com/QDucasse/gigue/tree/main/toccata

https://github.com/qducasse/gigue
https://github.com/chipsalliance/rocket-chip
https://github.com/openhwgroup/cva6
https://github.com/QDucasse/gigue/tree/main/toccata

20 2. Contributions à la sécurité hybride logiciel - matériel

méthodes ainsi que leurs tailles afin d’avoir un échantillon suffisamment repré-
sentatif d’applications. Pour le nombre d’appels, à l’initialisation, les méthodes
ont un taux d’occupation de 3% et on le fait varier de 1 à 6%. Nous avons
également expérimenté la variation de la taille des méthodes en fixant la taille
globale de la région de code JIT puis en générant des méthodes de 400, 600 et
800 octets.

Figure 2.12 – Génération des classes d’application.

Les trois axes d’exploration sont présentés dans la Figure 2.12 : dans la figure
de gauche, le taux d’appels varie à quantité d’accès mémoire constante ; dans la
figure de droite, le nombre d’accès et la taille des méthodes varie à taux d’appels
constant. Dans chaque cas, on a 9 “classes d’application” distinctes.

La Figure 2.13 présente les temps d’exécution (en nombre de cycles) des 18
classes d’applications (9 pour la variation d’appels et 9 autres pour les accès
mémoire) sur deux processeurs RISC-V : CVA6 (en bleu) et Rocket (en rouge).
Nous pouvons observer qu’augmenter le taux d’appels augmente sensiblement
la charge sur le coeur. Les méthodes “larges” avec un taux d’appels important
génèrent des charges de travail plus longues. Concernant les accès mémoire, leur
augmentation engendre également une augmentation du temps d’exécution.

2.2.3 JITDomain : une protection par le matériel
2.2.3.1 Explication

À la suite de cette première contribution, nous avons souhaité tirer profit de
la compilation JIT pour proposer JITDomain qui est un framework de sécurité

2.2. Protection de machines virtuelles embarquées pour RISC-V 21

Figure 2.13 – Exécution des binaires Gigue sur processeur CVA6 (en bleu) et
Rocket (en rouge).

matérielle basé sur le principe d’isolation au niveau instruction qu’on pouvait
observer dans des travaux existants [34], [35].

Une isolation de domaine au niveau instruction [34] est établie en dupliquant
les instructions d’accès mémoire et en leur donnant des domaines d’exécution
autorisés. Le code présent dans un domaine peut accéder uniquement aux don-
nées de ce même domaine ; des instructions particulières sont également ajoutées
pour pouvoir changer de domaine. Cette isolation est basée sur trois grands prin-
cipes : (1) l’étiquetage des régions mémoire en “domaines” ; (2) la duplication
des accès mémoire pour le deuxième domaine ; (3) l’ajout d’instructions pour
changer de domaine.

L’instrumentation de ces domaines dédiés pour la région de code JIT permet
d’avoir trois garanties à appliquer au code JIT : le call stack separation, le data
access restriction et le system call filtering. Pour arriver à ce but, trois domaines
sont définis : le base domain où le code de la VM et les données sont stockés dans
basedom, le jit domain qui contient le code JIT et les données associées dans
jitdom et un stack domain qui contient la shadow stack des adresses de retour
(stackdom).

JITDomain a été implémenté sur un processeur CVA6 : il utilise une struc-
ture scoreboard pour conserver une trace des instructions décodées et de leurs
opérandes, ainsi que les potentielles exceptions. Cette structure a été étendue
avec deux paramètres principaux : un target domain, le domaine auquel l’ins-
truction accède par un accès mémoire ou un changement de domaine ; et un flag
domain change qui définit si l’instruction doit changer de domaine ou non. En

22 2. Contributions à la sécurité hybride logiciel - matériel

ce qui concerne l’étiquetage des régions mémoires, plusieurs Control and Status
Registers (CSRs) sont ajoutés pour stocker l’information de domaine liée aux
régions définies dans le Physical Memory Protection (PMP) : on définit un CSR
dmpcfg qui contient 16 configurations de domaine (de dmp0cfg à dmp15cfg),
comme on peut le voir dans la Figure 2.14.

Figure 2.14 – Implémentation des CSRs pour la configuration de domaine.

Ensuite, il y a des modifications à apporter pour trois vérifications de do-
maine.

● Vérification de code domain. Dans cette étape, on vérifie le domaine de
l’instruction en cours de traitement avec le domain courant présent dans
le registre curdom : s’il y a une différence entre les deux, une interrup-
tion d’instruction illégale est déclenchée. Pour vérifier le code domain, il a
été nécessaire de rajouter la logique de vérification dans le processeur (le
contrôleur d’interruption était déjà, il a juste fallu associer le flag d’ins-
truction illégale déjà présent dans le processeur CVA6 que nous avons
utilisé).

● Vérification de data domain. Nous avons implémenté un contrôle du do-
maine de la donnée qui doit être accédée en lecture-écriture sous la forme
d’un Domain Memory Protection (DMP) qui se place en amont du PMP.
Vérifier le data domain a nécessité d’ajouter la logique associée dans le
processeur.

● Vérification de fetch domain. Une étape similaire est réalisée dans l’étage
de fetch du processeur : les requêtes et les réponses du cache sont étendues
avec des informations de domaine qui sont également vérifiées.

2.2. Protection de machines virtuelles embarquées pour RISC-V 23

2.2.3.2 Résultats

Pour mesurer l’impact en performance de JITDomain, nous avons utilisé
Gigue (décrit dans la Section 2.2.2) pour générer différentes applications. Nous
avons utilisé le processeur CVA6 commit bb80b3f, Verilator version 5.008 et les
binaires ont été compilés avec la version 2.40.0 de la toolchain GNU RISC-V.

Une comparaison est faite entre un CVA6 non modifié (CVA6 baseline) et
la version contenant le mécanisme JITDomain dans la Table 2.3 et la Figure
2.15 pour les différentes applications “call” (variation du taux d’appels dans
les fonctions), et la Table 2.4 et la Figure 2.16 pour les différentes applications
“memory” (variation du nombre d’accès mémoire et des tailles des méthodes).
Les deux figures montrent le surcoût en nombre de cycles (couleur foncée dans
les histogrammes) et le Cycles Per Instruction (CPI) (couleur claire).

Table 2.3 – Surcoût en performance (nombre de cycles / cycles par instruction).

Taux de calls
Taille méthode 1. 400 octets 2. 600 octets 3. 800 octets

1. 1% des instructions 2,43% / 2,34% 1,67% / 1,47% 1,46% / 1,15%
2. 3% des instructions 2,29% / 1,52% 1,56% / 0,72% 0,98% / 0,29%
3. 6% des instructions 1,22% / 0,27% 0,94% / 0,22% 1,01% / 0,49%

Moyenne 1,51% / 0,95%

Figure 2.15 – Surcoûts en cycles et en CPI (applications call).

L’impact en termes de performances sur le nombre de cycles est négligeable :
1,51% pour les appels (calls) et 1,27% pour les accès mémoire. Les résultats sont
plus visibles lorsque que les méthodes JIT sont de petite taille : 2,4% pour les
appels et 2,2% pour les accès mémoire. Le nombre de cycles par instructions est
également impacté dans une moindre mesure avec une moyenne de 0,91% pour

24 2. Contributions à la sécurité hybride logiciel - matériel

les appels et 0,61% pour les accès mémoire. Globalement, on peut constater que
l’impact sur les performances est minimal.

Table 2.4 – Surcoût en performance (nombre de cycles / cycles par instruction).

Accès mémoire
Taille méthode 1. 400 octets 2. 600 octets 3. 800 octets

1. 4% des instructions 2,16% / 1,26% 1,39% / 0,72% 0,86% / 0,31%
2. 12% des instructions 1,69% / 0,96% 1,21% / 0,55% 0,68% / 0,19%
3. 20% des instructions 1,60% / 0,85% 1,20% / 0,50% 0,60% / 0,06%

Moyenne 1,27% / 0,61%

Figure 2.16 – Surcoûts en cycles et en CPI (applications memory).

Les résultats d’implémentation sur FPGA sont présentés dans la Table 2.5 où
on y présente une comparaison entre un processeur CVA6 avec la solution JIT-
Domain et un processeur CVA6 non modifié. L’approche JITDomain amène un
surcoût inférieur à 0,5% pour les Look-Up Tables (LUTs) et les registres. Nous
supposons que cela engendre également un surcoût négligeable sur la consom-
mation globale du circuit. De plus, les modifications matérielles effectuées ne
sont pas sur le chemin critique du processeur, la fréquence du circuit reste donc
maximale.

2.3. Conclusion et perspectives 25

LUT Slice Registers
Baseline JITDomain Baseline JITDomain

Frontend 3190 3171 4058 4060
Decode Stage 609 664 266 269
Issue Stage 14936 15134 8983 9036
Execute Stage 23391 23410 7563 7571
Commit Stage 203 218 0 0
CSR Regfile 2434 2408 1691 1716
Cache Subsystem 6242 6242 2507 2509

Total 52719 52961 25482 25575
(+0,46%) (+0,36%)

Table 2.5 – Résultats d’implémentation de JITDomain pour un processeur
RISC-V CVA6 non modifié (baseline) et la version avec l’implémentation de
JITDomain.

2.3 Conclusion et perspectives
Ce chapitre a présenté les principales contributions des thèses de Muhammad

Abdul Wahab et de Mounir Nasr Allah sur le projet Cominlabs HardBlare (Sec-
tion 2.1) et celle de Quentin Ducasse sur les machines virtuelles embarquées et
sécurisées (Section 2.2). Les publications associées à ces deux thèses sont notées
dans l’annexe A.2.

DIFT et monitoring logiciel
Les travaux présentés dans la Section 2.1 ont proposé une solution qui permet

un suivi (ou monitoring) de l’exécution d’un logiciel dans un processeur embar-
qué ARM en s’aidant des composants de debug présents dans le processeur et
en implémentant un co-processeur dans un FPGA.

La thématique autour du DIFT matériel a été poursuivie sous plusieurs
formes. On peut citer l’approche Raft [36] qui est un équivalent à l’approche
off-core qu’on a développé dans la thèse de Muhammad Abdul Wahab mais où
le processeur est désormais basé sur l’Instruction Set Architecture (ISA) RISC-
V avec le coprocesseur connecté via une interface dédiée. La solution présentée
dans cet article présente malgré tout un surcoût matériel assez important (+34%
de LUTs et +93% de registres).

On peut citer également des travaux qui s’intéressent aux attaques en fautes
d’une solution de DIFT sur un processeur RISC-V [37].

Sur ces fonctions de monitoring de logiciel, il y a encore des éléments à

26 2. Contributions à la sécurité hybride logiciel - matériel

étudier, notamment autour de l’utilisation des compteurs de performance pour
récupérer des métriques sur le comportement du logiciel. Il me semble aussi
également intéressant de suivre les évolutions de la spécifications RISC-V autour
des mécanismes de trace [38] ce qui pourrait permettre de proposer des solutions
encore plus performantes à moindre coût matériel.

Compilation à la volée et RISC-V
Toujours dans une thématique de sécurité combinant des éléments matériels

et logiciels, les travaux présentés dans la Section 2.2 ont montré qu’il était pos-
sible de sécuriser des machines virtuelles embarquées sur un processeur RISC-V.
Plus précisément, les travaux s’articulaient autour de la sécurisation de code
JIT par des modifications dans le pipeline du processeur. Les travaux de Quen-
tin Ducasse nous ont permis de publier plusieurs articles dont un article de revue
est en cours d’évaluation dans la revue Elsevier “Microprocessors and Microsys-
tems” [39] : cet article se focalise sur l’implémentation matérielle de son approche
JITDomain pour séparer l’exécution de logiciels en plusieurs domaines.

Les travaux vont avoir des suites dans le projet SCAMA décrit plus tard
dans ce manuscrit dans la Section 4.2 où on souhaite intégrer une compilation
à la volée pour protéger des caches contre des attaques par canaux cachés.

Chapitre 3

Contributions aux architectures
matérielles sécurisées

Sommaire
3.1 Protection d’une IOMMU . 27

3.1.1 Contexte du projet . 27
3.1.2 Sécurité des accès mémoire avec IOMMU dans un envi-

ronnement RISC-V . 29
3.1.3 État de l’art . 30
3.1.4 Plateforme expérimentale 33

3.2 Définition d’architectures d’IA pour de la détection d’in-
trusion . 35
3.2.1 Contexte du projet . 35
3.2.2 L’intelligence artificielle au service de la détection d’in-

trusions . 36
3.2.3 Accélération de fonctions de Machine Learning 37

3.3 Conclusion et perspectives . 39

3.1 Protection d’une IOMMU
La section décrit une partie des travaux de la thèse d’Aya Jendoubi dont

la thèse a lieu dans le cadre du projet ANR TrustGW (https://trustgw.
projects.labsticc.fr/). Dans un premier temps, un bref rappel du contexte
du projet est effectué avant de présenter une synthèse des travaux en cours.

3.1.1 Contexte du projet
À l’heure de l’Internet des objets, les systèmes embarqués communicants

se répandent massivement dans des infrastructures critiques. Malheureusement,
ils participent malgré eux à l’augmentation de la surface d’attaque globale des
systèmes d’information ce qui représente une menace sans précédent [40]. Il est

https://trustgw.projects.labsticc.fr/
https://trustgw.projects.labsticc.fr/

28 3. Contributions aux architectures matérielles sécurisées

donc essentiel de garantir le meilleur niveau de protection pour de tels systèmes
qui manipulent des données sensibles. En effet, du fait de leur connectivité, ils
font face à de nombreuses menaces.

Dans le cadre du projet TrustGW, le système considéré est composé d’objets
connectés à une passerelle (ou gateway) qui est elle-même connectée à un ou
plusieurs serveurs de calculs. L’architecture de la passerelle qui est au coeur du
projet est “hétérogène” logicielle-matérielle et composée de plusieurs processeurs
(un processeur bande de base ou BaseBand Processor (BBP) et un processeur
générique ou General Purpose Processor (GPP)) et d’accélérateurs matériels
implémentés sur FPGA (les ressources FPGA sont virtualisées afin d’avoir une
vue uniforme du point de vue des applications). La passerelle embarque plusieurs
machines virtuelles afin de pouvoir déployer les services des différents opérateurs
qu’elle héberge de façon cloisonnée. Un hyperviseur permet de déployer les ma-
chines virtuelles et d’assurer leur sécurité [41]. La Figure 3.1 présente une vue
globale de l’architecture prise en compte pour la passerelle avec les différentes
ressources logicielles et matérielles qui sont mises en oeuvre dans le projet.

Figure 3.1 – Architecture générale de la passerelle.

L’architecture est composée d’un processeur applicatif GPP hébergeant plu-
sieurs machines virtuelles (GPOS) déployées par un hyperviseur dédié (hyper-
visor GPP), d’un processeur bande de base (BBP) hébergeant plusieurs ma-
chines virtuelles (eOS) déployées par un hyperviseur dédié (hypervisor BBP) et
d’une matrice reconfigurable permettant de déployer des accélérateurs matériels
(eFPGA). Comme illustré sur la Figure 3.1, une application est déployée en
logiciel et matériel créant ainsi un espace d’exécution.

Concrètement, le projet ANR TrustGW se décompose en trois thématiques
majeures :

● La sécurisation de l’architecture de communication de la passerelle.
Les travaux réalisés par un doctorant au Lab-STICC à l’Université de
Bretagne-Sud intègrent notamment l’étude d’architectures de détection
d’intrusions dans ce type de passerelle connectée [42].

3.1. Protection d’une IOMMU 29

● La sécurité des applications au sein des machines virtuelles. Ces travaux
sont réalisés par un doctorant dans l’équipe INRIA SUSHI 1.
● La sécurisation de l’hyperviseur et des ressources virtualisées qui constitue

le travail de thèse d’Aya Jendoubi et qui va être développé dans le reste
de cette section.

Dans un SoC, les accès Direct Memory Access (DMA) peuvent être des
sources d’attaques étant donné qu’ils sont utilisés par des périphériques pour
accéder directement à la mémoire sans utiliser le processeur principal et ses éven-
tuels mécanismes de sécurité. Si des périphériques malveillants utilisent du DMA,
ils sont alors en mesure d’accéder à des zones mémoire contenant des données
critiques. Pour contrecarrer ces risques, l’IOMMU est un mécanisme qui fournit
une isolation des espaces mémoire associés aux périphériques d’entrée-sortie et
protège ainsi le système des accès mémoire non autorisés.

Malgré le niveau de protection apporté par l’IOMMU, la flexibilité apportée
par des systèmes reconfigurables dynamiquement apporte aussi des nouvelles
problématiques de sécurité. La reconfiguration dynamique partielle ou Dynamic
Partial Reconfiguration (DPR) permet de modifier les composants matériels pen-
dant l’exécution : néanmoins cette capacité augmente la surface d’attaque en
permettant à des entités malveillantes d’exploiter les processus de reconfigura-
tion. Dans le travail de thèse d’Aya Jendoubi, on s’intéresse à une passerelle
avec IOMMU qui est en mesure de déployer des accélérateurs matériels selon les
besoins de l’utilisateur par l’utilisation de la DPR.

3.1.2 Sécurité des accès mémoire avec IOMMU dans un
environnement RISC-V

Dans un objectif de performance, le partage de données entre plusieurs res-
sources matérielles nécessite souvent du DMA pour optimiser les communi-
cations. Cependant, cette configuration permet également à des acteurs mal-
veillants d’exploiter ces accès.

Comme on peut le voir dans la Figure 3.2, l’IOMMU amène des mécanismes
de contrôle d’accès qui s’assurent que les périphériques peuvent uniquement
accéder aux régions mémoire qui leur sont explicitement allouées : dans cette
figure, les MHAs sont des accélérateurs matériels malveillants et les LHAs des
accélérateurs matériels légitimes. En isolant les accès mémoires sur différents
périphériques, l’IOMMU aide à se prémunir des accès non autorisés et des éven-
tuelles fuites de données.

Cette protection est particulièrement importante dans les systèmes virtua-
lisés où plusieurs VMs partagent les mêmes ressources matérielles. L’IOMMU

1. https://team.inria.fr/sushi/

https://team.inria.fr/sushi/

30 3. Contributions aux architectures matérielles sécurisées

(a) Sans IOMMU (b) Avec IOMMU

Figure 3.2 – Architecture du SoC utilisé dans cette étude : sans et avec
IOMMU.

associe les adresses des périphériques à des adresses physiques en mémoire de
manière à maintenir une isolation entre les différents environnements virtuels et
à atténuer les attaques inter-VM.

L’IOMMU effectue une transformation d’adresses similaire à ce que l’on peut
trouver dans une Memory Management Unit (MMU), où on traduit l’Input Out-
put Virtual Address (IOVA) reconnue par le périphérique d’entrée-sortie vers
l’adresse physique correspondante. Dans les environnements virtualisés, l’hyper-
viseur ajoute une couche de traduction, ce qui oblige l’IOMMU à gérer la traduc-
tion dite “G-stage” au niveau de l’hyperviseur et la traduction dite “VS-stage”
pour chaque VM au niveau du système d’exploitation invité.

3.1.3 État de l’art
3.1.3.1 Analyses de sécurité

Le temps nécessaire à la mise à jour des caches de l’IOMMU augmente le
risque d’exploitation par des périphériques malveillants comme cela est évoqué
par Duccoussou et al. [43].

De plus, Tiemann et al. [44] ont exposé des vulnérabilités liées aux caches
de l’IOMMU, plus particulièrement dans l’Input Output Translation Lookaside
Buffer (IOTLB), et apporte une analyse complète de la menace. Les auteurs dé-
montrent comment ces vulnérabilités peuvent faire fuiter des communications et
des données sensibles qui transitent entre les périphériques, tels que les FPGAs et
les Graphics Processing Units (GPUs), grâce à des fuites temporelles de l’IOTLB
qui menacent les environnements cloud.

D’autres travaux se sont également intéressé au cas où l’IOMMU utilise la
mémoire système pour stocker les tables de translation, cette mémoire pouvant

3.1. Protection d’une IOMMU 31

alors être exploitée par des attaquants pour exfiltrer des données. Par exemple,
[45] présentent les défis liés à une acquisition de données fiable dans des envi-
ronnements cloud pour la détection de malwares et les analyses forensiques, en
particulier dans les systèmes qui utilisent une IOMMU.

D’une manière similaire, Peglow s’est intéressé à la sécurité des plateformes
hétérogènes CPU/FPGA utilisant l’IOMMU [46]. Cet article identifie des vul-
nérabilités spatiales, telle qu’une surexposition de la mémoire liée à des pages
mémoire à trop gros grain et des vulnérabilités temporelles dues à des entrées
obsolètes dans l’IOTLB. Ce travail s’est tout d’abord intéressé aux systèmes
statiques, mais il pose malgré tout les bases sur des problématiques de gestion
de cache et de translation d’adresses qui peuvent être pertinentes dans des en-
vironnements statiques et dynamiquement reconfigurables.

Bien que n’abordant pas spécifiquement les vulnérabilités liées aux entrées-
sorties dans les FPGA multitenants, des travaux tels que [47] et [48] explorent
les défis de sécurité qui sont présents dans des environnements avec des FPGAs
partagés et qui s’alignent sur notre modèle de menace. Ils proposent des méca-
nismes pour un contrôle d’accès sécurisé et une isolation par domaines, ce qui
offre des solutions pour la gestion des données partagées et la détection des accès
non autorisés.

Par ailleurs, [49] discute des vulnérabilités relatives aux ressources partagées
et à la reconfiguration dynamique dans des environnements FPGA multitenants,
telles que des redirections d’adresses mémoire ou des attaques par dissimulation
de tâches. Les auteurs décrivent une solution basée sur un Secure Authentication
Module (SAM) qui effectue une vérification en temps réel des tâches matérielles
et des applications logicielles par des Multiply and ACcumulates (MACs) qui
assurent l’intégrité des tâches et empêchent les modifications de bitstream non
autorisées. Cependant, cette solution nécessite d’avoir une configuration statique
des tâches et s’appuie en grande partie sur un SAM externe.

Des études telles que celle menée par Morgan et al. [50] expliquent comment
intégrer des FPGAs avec des fonctions PCI Express spécifiques et exploiter des
vulnérabilités du DMA peut mener à des attaques critiques de mauvaises confi-
gurations.

Bossuet et al. [51] démontrent comment des Intellectual Propertys (IPs) mal-
veillantes peuvent effectuer des attaques intra-SoC, y compris des attaques sur
la synchronisation des caches et des observations par canaux cachés, pour en dé-
duire des informations sensibles sans équipement externe. Ce travail met aussi en
avant des techniques émergentes qui exploitent les signaux du bus Advanced eX-
tensible Interface (AXI) pour détecter les états du cache et avoir des mécanismes
de protection robustes. Ensuite, [52] a présenté plusieurs stratégies d’attaques
au niveau Register-Transfer Level (RTL) où les attaquants peuvent manipuler
les outils Xilinx pour manipuler les protocoles de sécurité des modules d’inter-

32 3. Contributions aux architectures matérielles sécurisées

connexion AXI. Cela comprend le fait d’exploiter des IPs d’un monde sécurisé
depuis un domain non sécurisé, d’empêcher les accès aux IPs du monde sécu-
risé, de contourner les erreurs de sécurité, et d’implémenter des attaques basées
sur les FIFO pour exfiltrer des données sensibles. Tout ceci met en avant les
nombreux problèmes de sécurité présents dans les SoCs hétérogènes.

3.1.3.2 Exploitation de vulnérabilités

Dans notre système basé sur le protocole AXI, la logique qui attribue les ac-
cès aux périphériques d’entrée-sortie contrôle les requêtes de lecture et d’écriture
depuis les périphériques vers l’IOMMU. Cette fonction d’arbitrage est respon-
sable des requêtes de traduction d’adresse provenant des accélérateurs à travers
le Translation Request Interface (TRI) de l’IOMMU qui détermine le séquence-
ment et la priorité à affecter à chaque accès.

Une attaque possible vise particulièrement la nature dynamique de ce pro-
cessus en usurpant l’identité de périphériques matériels légitimes, contournant
ainsi les vérifications effectuées par l’IOMMU.

(a) Les requêtes DMA de
deux HAs distincts.

(b) MHA qui échoue à accé-
der à la région mémoire du
LHA.

(c) MHA qui usurpe l’iden-
tité du LHA en volant son
identifiant et en accédant à sa
région mémoire.

Figure 3.3 – Scénario d’exploitation : Usurpation de l’identifiant du périphé-
rique (Device ID Spoofing) et accès mémoire non autorisé.

La Figure 3.3 montre qu’en manipulant les entrées du Device Directory Table
Cache (DDTC), un acteur malveillant peut obtenir des accès à des zones mé-
moire contenant des données critiques, compromettant l’isolation proposée par
l’IOMMU RISC-V. On expose également des vulnérabilités critiques présentes
dans les implémentations actuelles de l’IOMMU, particulièrement dans les sys-
tèmes avec une grande flexibilité et des reconfigurations fréquentes.

3.1. Protection d’une IOMMU 33

IOMMU

Dynamically reconfigurable Area
HA 1 HA 2

IOAL (AXI interconnect)

DMA req(ID1, IOVA1) DMA req(ID2, IOVA2)

ID1

Translation Request Inetrface

DC1

IOVA2

SPA1

SPA2

(1)

DDTC

ID1 DC1

ID2 DC2

IOVA 1

ID2
DC2

IOTLB

VA1 SPA1

VA2 SPA2

IOMMU

Dynamically reconfigurable Area
LHA 1 MHA

IOAL (AXI interconnect)

DMA req(ID2, IOVA1)

Translation Request Inetrface

IOVA1

SPA = 0

(2)

DDTC

ID1 DC1

ID2 DC2
ID2

DC2

IOTLB

VA1 SPA1

VA2 SPA2

IOMMU

Dynamically reconfigurable Area
LHA MHA

IOAL (AXI interconnect)

DMA req(ID1, IOVA1)

Translation Request Inetrface

IOVA1

(3)

DDTC

ID1 DC1

ID2 DC2
ID1

DC1

IOTLB

VA1 SPA1

VA2 SPA2

ID Spoofing 2

SPA1

1

Figure 3.4 – Scénario d’exploitation : Usurpation de l’identifiant du périphé-
rique (Device ID Spoofing) et accès mémoire non autorisé (1) Les requêtes DMA
de deux HAs distincts (2) MHA qui échoue à accéder à la région mémoire du
LHA (3) MHA qui usurpe l’identité du LHA en volant son identifiant et en ac-
cédant à sa région mémoire.

3.1.4 Plateforme expérimentale
3.1.4.1 Environnement logiciel et matériel

Pour faire la démonstration d’attaques pouvant être menées par un MHA
(voir Figure 3.4), nous avons proposé l’architecture décrite dans la Figure 3.5.

Figure 3.5 – Intégration d’un MHA dans un SoC TrustGW.

Un pont Wishbone vers AXI est nécessaire afin de s’interfacer au SoC du projet
TrustGW. Pour cette phase de démonstration, ce SoC est réduit à un processeur

34 3. Contributions aux architectures matérielles sécurisées

CVA6 de l’OpenHW Group sur lequel on exécute l’hyperviseur Bao développé
par l’Université de Minho au Portugal [53], [54]. L’hyperviseur contient deux
machines virtuelles qui exécutent Linux et FreeRTOS au-dessus de Linux.

Le SoC a été construit avec le framework LiteX 2. L’accélérateur malveillant
est constitué d’un pont entre un périphérique série et un bus Wishbone sur
lequel on vient se connecter avec un ordinateur grâce à un outil du framework
LiteX (litex_server) : ainsi, les attaques sont exécutées depuis la machine de
test. Nous avons envisagé 4 scénarios d’attaques dans le cadre de ces travaux de
recherche, ils sont brièvement décrits dans la Section 3.1.4.2.

3.1.4.2 Scénarios d’attaques

Démonstration no 1 L’objectif de la démonstration no 1 est de montrer qu’un
accélérateur malveillant peut lire et écrire dans la mémoire Random Access
Memory (RAM) lorsque aucun mécanisme de sécurité n’est mis en place (par
exemple l’IOMMU). Le scénario est le suivant :

— Un accélérateur victime écrit et lit dans la mémoire RAM. L’objectif est
de simuler des accès DMA.

— Le MHA lit la zone mémoire de l’accélérateur victime.
— Le MHA écrit dans la zone mémoire de l’accélérateur victime.

Démonstration no 2 Dans la démonstration no 2, on souhaite montrer qu’un
accélérateur malveillant ne peut pas lire et écrire dans la zone mémoire RAM
d’un autre accélérateur lorsqu’une IOMMU est présente. Le scénario est le sui-
vant :

— Un accélérateur victime écrit et lit dans la mémoire RAM. L’objectif est
de simuler des accès DMA.

— Le MHA essaie de lire dans la zone mémoire de l’accélérateur victime
sans succès.

— Le MHA essaie d’écrire dans la zone mémoire de l’accélérateur victime
sans succès.

Dans la zone statique, les accélérateurs ont des identifiants fixes ce qui em-
pêche l’usurpation d’identifiants.

Démonstration no 3 L’objectif de la démonstration no 3 est de démontrer
qu’un accélérateur malveillant déployé dans une zone reconfigurable dynami-
quement peut lire et écrire dans la mémoire RAM d’un autre accélérateur alors
qu’une IOMMU est présente. Nous avons également comme hypothèse que l’at-
taquant a réussi à récupérer l’identifiant de sa victime.

2. https://github.com/enjoy-digital/litex

https://github.com/enjoy-digital/litex

3.2. Définition d’architectures d’IA pour de la détection d’intrusion35

Le scénario est le suivant :
— Un accélérateur victime écrit et lit dans la mémoire RAM. L’objectif est

de simuler des accès DMA.
— Le MHA peut lire dans la zone mémoire de l’accélérateur victime avec

succès.
— Le MHA peut écrire dans la zone mémoire de l’accélérateur victime avec

succès.

Démonstration no 4 L’objectif de la démonstration no 4 est de démontrer
qu’un accélérateur malveillant déployé dans une zone reconfigurable dynamique-
ment ne peut pas lire ni écrire dans la mémoire RAM d’un autre accélérateur
alors qu’un durcissement fort du système est utilisé : l’IOMMU et le wrapper
permettant de faire du contrôle d’accès. Comme dans la démonstration no 3,
on considère également que l’attaquant a réussi à récupérer l’identifiant de sa
victime. Le scénario est le suivant :

— Un accélérateur victime écrit et lit dans la mémoire RAM. L’objectif est
de simuler des accès DMA.

— Le MHA ne peut pas lire dans la zone mémoire de l’accélérateur victime.
— Le MHA ne peut écrire pas lire dans la zone mémoire de l’accélérateur

victime.

3.2 Définition d’architectures d’IA pour de la
détection d’intrusion

Cette section décrit des travaux en cours pour la thèse de Pierre Garreau
qui a débutée fin 2023 dans le cadre de la chaire de cyberdéfense des systèmes
navals (https://chaire-cyber-navale.fr/). Dans cette thèse, la sécurité est
abordée à un niveau d’abstraction plus élevé. En effet, nous souhaitons étudier
comment réaliser un système de détection d’intrusions (ou Intrusion Detection
System (IDS)) pour détecter des intrusions dans une meute d’appareils mal-
veillants à l’aide d’algorithmes d’intelligence artificielle frugaux. L’objectif final
est d’implémenter un système sur un composant reconfigurable FPGA avec un
processeur RISC-V et des accélérateurs matériels dédiés à l’Intelligence Arti-
ficielle (IA). Le reste de la section donne quelques éléments de l’état sur les
algorithmes et les accélérations matérielles possibles.

3.2.1 Contexte du projet
De nos jours, les véhicules autonomes sont de plus en plus présents dans les

forces militaires. Par exemple, l’entreprise allemande ARX va investir plusieurs

https://chaire-cyber-navale.fr/

36 3. Contributions aux architectures matérielles sécurisées

millions d’euros pour construire une nouvelle usine de véhicules terrestres auto-
nomes [55] ou Overland AI, une startup américaine qui développe un véhicule
tout-terrain autonome [55]. Dans un contexte plus maritime, on peut également
citer Naval Group [56] ou Thales [57] qui proposent des produits autonomes
pouvant évoluer sur et sous l’eau.

De plus, avec l’explosion des cyberattaques, il est désormais indispensable
de sécuriser les communications entre une flotte de véhicules autonomes et le
vaisseau-mère. L’apprentissage automatique (ou Machine Learning (ML) dans
la suite de ce manuscrit) propose désormais des modèles qui sont en mesure
de réaliser des détections d’intrusions efficaces. Cependant, la majorité de ces
modèles nécessite une puissance de calcul et des besoins en mémoire conséquents.

Les systèmes embarqués sur les drones ont des contraintes fortes sur la puis-
sance et la mémoire disponible afin de maximiser leur autonomie : cela empêche
d’intégrer des modèles classiques de ML qui sont gourmands. En prenant en
compte ces contraintes, nous souhaitons étudier les architectures de Machine
Learning qui pourraient être implémentées dans un système comprenant un pro-
cesseur RISC-V dont le jeu d’instructions est facilement extensible afin de propo-
ser des extensions qui permettraient d’accélérer les calculs liés aux algorithmes
d’intelligence artificielle.

3.2.2 L’intelligence artificielle au service de la détection
d’intrusions

Depuis quelques années, des travaux de recherche ont étudié l’application
de l’intelligence artificielle pour de la détection d’intrusions. Ferrag et al. [58]
présente plusieurs techniques d’apprentissage profond pour la détection d’intru-
sions. Les auteurs séparent les 7 modèles étudiés en 2 catégories distinctes :
d’une part, les modèles discriminants ; d’autre part, les modèles génératifs ou
non supervisés.

La première catégorie comprend les Deep Neural Networks (DNNs), les
Recurrent Neural Networks (RNNs) et les Convolutional Neural Networks
(CNNs). Ces modèles sont souvent utilisés dans le Machine Learning et donne
des résultats décents pour des applications d’IDS comme le montre l’article de
Ferrag et al. [58]. La deuxième catégorie inclut les Restricted Boltzmann Ma-
chines (RBMs), les Deep Belief Networks (DBNs), les Deep Boltzmann Ma-
chines (DBMs) et les Deep Autoencoders (DAs).

D’autres techniques de Machine Learning ont également été explorées. Par
exemple, Bouazzati et al. [59] implémentent un IDS basé sur du Reinforcement
Learning (RL) en utilisant de l’apprentissage hors-ligne étant donné que l’ap-
prentissage en ligne augmenterait significativement la consommation du sys-
tème. Farnaaz et Jabbar [60] présentent une solution basée sur un modèle de

3.2. Définition d’architectures d’IA pour de la détection d’intrusion37

type Random Forest (RF) : selon les auteurs, cette technique a des résultats qui
dépassent les IDS traditionnels n’étant pas basés sur de l’intelligence artificielle :
En effet, comme le précise Choudhary et al. [61], ces derniers sont principale-
ment basés sur de la reconnaissance de signatures et sont régulièrement dépassés
par les techniques qui détectent des anomalies.

De plus, le fait d’intégrer de la détection d’intrusions dans un environnement
avec une meute de drones nous incite à aller étudier également les IDS avec de
l’apprentissage fédéré (ou Federated Learning (FL)) ou multiagents [62].

3.2.3 Accélération de fonctions de Machine Learning
L’accélération des fonctions de Machine Learning peut se faire de 4 façons

différentes :

● L’accélération de fonctions spécialisées.

● Des extensions de jeux d’instructions.

● Par l’optimisation des transferts de données.

● Par des approches de coconception logicielle-matérielle.

À l’heure où j’écris ce manuscrit, un article de type survey est en cours d’éva-
luation dans la revue Elsevier “Microprocessors and Microsystems”. Cet article
décrit en détail ces 4 approches et les contributions principales pour chacune. Je
propose dans la suite de cette sous-section de s’intéresser plus particulièrement
à 2 d’entre elles que nous devrions explorer davantage dans la suite des travaux
de la thèse de Pierre Garreau.

3.2.3.1 Extensions de jeux d’instructions

Les architectures basées sur le jeu d’instructions RISC-V peuvent se révéler
intéressantes dans ce cadre. Étant donné qu’il est extensible, il est possible d’im-
plémenter des modules matériels spécialisés dans les calculs gourmands qu’on
retrouve dans les modèles de Machine Learning. Les CNNs sont les modèles les
plus couramment accélérés par du matériel. L’opération de convolution est par-
ticulièrement gourmande. Pour répondre à cette problématique, Kovacevic et al.
[63] ont développé un processeur RISC-V qui inclut un processeur scalaire et un
processeur vectoriel. Les deux coeurs fonctionnent simultanément et optimisent
la charge de travail de sorte que les calculs vectoriels et matriciels, tels que les
opérations de convolution, soient exécutés par le coeur spécialisé en vectoriel.
Wu et al. [64] ont ajouté des instructions RISC-V pour lier un coprocesseur au
processeur principal et l’utiliser pour les calculs relatifs à la convolution.

38 3. Contributions aux architectures matérielles sécurisées

Les DNNs peuvent également être accélérés matériellement. Par exemple, As-
karihemmat et al. [65] ont implémenté un accélérateur nommé BARVINN 3 qui
comprend des Matrix Vector Units (MVUs) qui sont des modules matériels spé-
cialisés dans les calculs de type GEneral Matrix-Vector multiplication (GEMV),
GEneral Matrix Multiplication (GEMM) ou encore de type convolution. Ver-
mat et al. ont également développé un accélérateur en utilisant de nouvelles
instructions, mais proposent en plus une méthode complète pour optimiser la
consommation de leur solution.

L’accélération d’algorithme de Machine Learning peut se faire par la quanti-
fication. Cette technique a pour but de réduire le temps de calcul en optimisant
la précision des données utilisées dans le traitement. Sanchez-Flores et al. [66]
ont modifié les poids de leur CNN avec de la précision multiple pour optimiser
l’utilisation de la mémoire et son temps d’exécution. Dès lors qu’on arrive à un
compromis entre la précision du modèle et les ressources utilisées, des modèles
plus larges peuvent être intégrés dans des systèmes embarqués.

3.2.3.2 Optimisation des transferts de données

Au-delà de l’accélération des calculs, l’optimisation des transferts de don-
nées a également été identifiée comme critique pour optimiser les temps d’exé-
cution des algorithmes de Machine Learning. La solution la plus couramment
employée est d’ajouter des buffers dans les modules de calculs. Plus récemment,
le Processing-in-Memory (PiM) est apparu comme une alternative intéressante.
L’objectif général des solutions de PiM est de mettre l’unité de calcul au plus
près des éléments de mémoire : ainsi, on évite le transfert dans des registres
intermédiaires côté processeur qui ajouteraient de la latence non désirée.

Par exemple, Bavikadi et al. [67] proposent une architecture PiM avec un
cluster de calcul dont les dimensions sont reconfigurables dont les éléments prin-
cipaux qui réalisent des opérations spécifiques aux CNNs sont placés au plus
près de la mémoire. Dans une autre approche, Zhang et al. [68] présentent un
accélérateur pour des opérations d’inférences dans les DNNs où les éléments de
calcul sont directement intégrés dans le processeur. Ces deux exemples de tra-
vaux sont adaptés à l’utilisation d’un modèle unique. Lorsque plusieurs modèles
doivent être traités en parallèle, d’autres solutions existent pour optimiser l’or-
donnancement des calculs : par exemple, Choi et al. [69], [70] ont proposé deux
solutions qui permettent de gérer plusieurs DNNs en parallèle.

3. https://github.com/hossein1387/BARVINN

https://github.com/hossein1387/BARVINN

3.3. Conclusion et perspectives 39

3.3 Conclusion et perspectives
Ce chapitre est une synthèse des travaux de la thèse d’Aya Jendoubi sur le

projet ANR TrustGW et de celle de Pierre Garreau financée par la chaire de
cyberdéfense des systèmes navals. Les publications associées à ces deux thèses
sont présentées en annexe A.2.

Hyperviseurs et microarchitecture
À l’heure de l’écriture de ce manuscrit, les scénarios sont en cours de déve-

loppement. Dans le cadre du projet ANR TrustGW, il y a un lot de travail dont
l’objectif est de livrer un démonstrateur global avec les contributions des diffé-
rentes thèses, le travail d’Aya Jendoubi y sera bien entendu intégré. Au cours
de cette thèse et des autres travaux de recherche que j’ai menés en parallèle, j’ai
pu identifier des pistes qui me paraissent intéressantes à étudier à l’avenir.

Le Chapitre 4 présente quelques travaux passés et en cours sur des problé-
matiques de sécurité au niveau micro-architectural. J’imagine naturellement une
étude autour de la sécurité de Bao à cette échelle afin de répondre à des ques-
tions autour des canaux cachés créés par l’hyperviseur et le contournement de
l’isolation des VMs en utilisant des métriques issues du processeur (par exemple,
avec des compteurs de performance). D’autre part, on voit que l’implémentation
d’une IOMMU dépend de l’utilisation de plusieurs identifiants et a un impact sur
la façon dont on utilise les signaux du protocole AXI. Zonta et al. [71] ont publié
une étude qui démontre que les implémentations du protocole AXI ne suivent pas
toutes les caractéristiques fonctionnelles présentes dans les spécifications du pro-
tocole. À partir de ce constat, il est possible d’exploiter certaines des faiblesses
proposées dans l’article de Zonta et al. [72] pour exposer des attaques sur cer-
taines implémentations de blocs d’interconnexion AXI, notamment au niveau de
la microarchitecture. L’interaction entre la couche logicielle et les vulnérabilités
du bus de données pourraient alors faire l’objet d’études ultérieures.

Accélérateurs d’IA sécurisés
Les travaux initiés dans la thèse de Pierre Garreau présentés dans la Section

3.2 sont toujours en cours. Nous en sommes à un point où l’état de l’art est suffi-
samment abouti pour envisager l’implémentation d’une solution qui permettra à
terme de faire de la détection d’intrusion reconfigurable et efficace. Les contours
exacts sont encore à préciser, mais nous devrions nous diriger vers une solution
avec un processeur RISC-V existant et un coprocesseur implémentant différents
accélérateurs matériels pour pouvoir utiliser différents modèles de Machine Lear-
ning à la demande. Nous envisageons une preuve de concept qui serait sous la

40 3. Contributions aux architectures matérielles sécurisées

forme suivante :
● Une architecture avec deux modèles : un pour de la reconnaissance d’image,

l’autre pour de l’IDS.
● Chaque modèle aurait deux variantes :

● Une à efficacité maximale et consommation importante.
● Une autre orientée basse consommation, mais avec une efficacité al-

térée.
L’architecture envisagée serait basée sur un SoC tel que Pulpissimo [73] qui uti-
lise un coeur principal RISC-V (RI5CY ou Ibex) et une IP nommée Hardware
Processing Engine (HWPE) qui permet d’implémenter des accélérateurs ma-
tériels [74]. Dans notre cas, les accélérateurs seraient les modèles décrits précé-
demment. Ensuite, nous aimerions récupérer des métriques sur la consommation
d’une telle architecture afin de proposer un composant qui pourrait facilement
permuter entre les variantes de chaque modèle afin de répondre aux contraintes
globales du circuit.

Chapitre 4

Contributions sur la sécurité au
niveau micro-architecture

Sommaire
4.1 Protection des mémoires caches contre les timing attacks 41

4.1.1 Micro-architecture d’un système embarqué 41
4.1.2 Contexte du projet SCRATCHS 44
4.1.3 lock/unlock, un mécanisme de verrouillage de lignes de

cache . 45
4.1.4 Une solution “hybride” . 50

4.2 Protection des mémoires avec l’introduction de TEE . . . 52
4.2.1 Problématique . 52
4.2.2 Environnements d’exécution sécurisés pour architecture

RISC-V . 53
4.2.3 Solution envisagée . 55

4.3 Conclusion et perspectives . 56

Dans les chapitres précédents, j’ai présenté des contributions proches du ma-
tériel (Chapitre 3) et d’autres contributions basées sur une conception conjointe
logicielle-matérielle (Chapitre 2). Dans ce nouveau chapitre, je souhaite égale-
ment évoqué la sécurité au niveau micro-architectural : en effet, lorsqu’on déploie
un système sur puce, le système lui-même peut être source de fuites pouvant me-
ner à des failles de sécurité. Ce chapitre évoquera notamment des contextes où
les mémoires cache sont des cibles privilégiées.

4.1 Protection des mémoires caches contre les
timing attacks

4.1.1 Micro-architecture d’un système embarqué
La Figure 4.1 présente l’architecture interne du processeur CV32E40P auquel

un niveau de cache ont été ajoutés.

42 4. Contributions sur la sécurité au niveau micro-architecture

decoder

PC

WB

IF
ID

ID
EX

EX
WB

IM

RF

EX

WB

IM

RF

EX

RF

register
file

DIA

rB
rA DA

DB
DC

DIB

rC MULT
OpA

OpB RD

OpC

DIV
OpA

OpB RD

OpC

L1D
Cache

prefetch
buffer

controller

aligner

LSU PMP
OpA

OpB

RDOpC

compress
decoder

hwloop
regs

sleep unit interrupt interface

debug interface

CSROpA

OpB
RD

in
st

ru
ct

io
n

in
te

rf
a
ce

d
a
ta

 c
a
h
ce

in
te

rf
a
ce

ALUOpB

OpC

RD

OpA

d
a
ta

in
te

rf
a
ce

Figure 4.1 – Architecture d’un SoC basée sur le processeur CV32E40P avec
un niveau de cache.

Son pipeline est composé de 4 étages qu’on retrouve dans la majorité des
processeurs : Fetch (IF) pour lire les instructions, Decode (ID) pour les décoder,
EXecute (EX) pour exécuter les instructions et enfin WriteBack (WB) pour
écrire le résultat de l’instruction dans le banc de registres internes au processeur.

La mémoire cache présente dans la partie droite de la Figure 4.1 sert à
diminuer la latence lors des accès mémoires : la mémoire cache étant placée
entre le Central Processing Unit (CPU) et la mémoire externe, si la donnée est
présente en cache, le processeur n’ira pas la chercher plus loin.

Les caches peuvent se classer en plusieurs catégories :
● Caches à correspondance (direct-mapped cache) : chaque ligne de cache

est associée à une adresse en fonction d’une partie de cette dernière qu’on
appelle index.
● Caches associatifs (fully associative cache) : une adresse peut se localiser

dans n’importe quelle ligne de cache. La correspondance adresse - ligne de
cache est réalisée par une politique de remplacement.
● Caches associatifs à N voies (N-way set associative cache) : la structure la

plus répandue (voir Figure 4.2) sous forme d’une matrice de S ensembles
(ou sets) de N voies (ou ways). Chaque adresse est associée à un set en
fonction de son index.

Dans la Figure 4.2, une adresse de A bits est décomposée en trois parties :
un tag, un index et un offset. Le tag est l’offset permettent d’identifier les octets
à manipuler dans la ligne de cache et de différencier les différentes adresses dans
un même cache set. Dans le Chapitre 4, la politique Least Recently Used (LRU)
est utilisée : celle-ci évince la voie la moins récemment utilisée dans le cache set.

Nous nous sommes intéressés aux attaques par canaux auxiliaires. Ces at-
taques sont basées sur l’observation de sources d’information extraites pendant

4.1. Protection des mémoires caches contre les timing attacks 43

tag

A− log2(S)− log2(B)

index
log2(S)

offset

log2(B)

memory address (A bits)

metadata data metadata data

metadata data metadata data

metadata data metadata data

… …

…

…

…

way0 wayN-1

set0

set1

setS-1

= =

hit0

hitN

{miss;hit}

LRU

evicted way

Figure 4.2 – Cache associatif à N voies.

l’exécution du programme pour en extraire des informations critiques telles que
des clés cryptographiques ou des mots de passe. Dans le Chapitre 4, on se
concentre plus particulièrement sur les fuites temporelles : mesure du temps
d’exécution de la victime, étude des mécanismes d’optimisation et de partage de
ressources, etc. Lorsqu’on s’intéresse au cache, on se base sur le fait que le temps
d’accès à une donnée est fonction de sa position dans la hiérarchie mémoire.

Les articles [75], [76] donnent une liste exhaustive d’attaques sur les caches.
Par exemple, Flush+Reload [77] utilise une instruction du jeu d’instruction
x86 pour évincer des données du cache vers le LLC. Plus tard, l’attaquant peut
accéder aux ressources partagées dont l’adresse dépend du secret pour mesurer
le temps d’accès et en déduire les données auxquelles la victime a accédé.

On peut citer également Prime+Probe [78]-[81] est une attaque qui pos-
sède plusieurs variantes afin de s’attaquer aux différents niveaux de cache. Cette
attaque se déroule en trois étapes : 1) l’attaquant remplit son ensemble d’évic-
tion avec des données qui lui sont propres ; 2) dans un second temps, la victime
exécute son code et va écraser certaines données (ce qui impose que l’ensemble
d’éviction choisi par l’attaquant soit bien en phase avec les données de la vic-
time) ; 3) l’attaquant pourra alors mesurer le temps d’accès aux différentes don-
nées : si le temps d’accès est court, la donnée n’a pas été évincée et si ce temps
est plus long, la donnée a été évincée par une donnée de la victime.

Prime+Prune+Probe [82] est une évolution de Prime+Probe qui né-
cessite moins d’accès pour construire l’ensemble d’éviction. De plus, les contre-
mesures basées sur l’ajout d’aléa sont moins efficaces contre cette catégorie d’at-
taques.

Enfin, Evict+Time [80] est une autre attaque qui mesure le temps d’exé-
cution de la victime et qui se déroule en trois étapes : 1) l’attaquant mesure
le temps d’exécution de la victime ; 2) l’attaquant réalise l’étape Prime d’un

44 4. Contributions sur la sécurité au niveau micro-architecture

Prime+Probe pour évincer les données de la victime ; 3) enfin, l’attaquant
mesure de nouveau le temps d’exécution de la victime : si le temps diffère, la
victime a accédé au cache set manipulé pendant la phase de Prime.

Plusieurs contremesures ont été proposées contre ces attaques sur les fuites
temporelles : celles-ci peuvent être implémentées sous forme de modifications
de la couche logicielle, de modifications du matériel sur lequel s’exécute le pro-
gramme, voire d’une proposition hybride logicielle/matérielle.

Ces contre-mesures peuvent se classer en trois grandes catégories.
Tout d’abord, on peut réaliser une détection qui peut se matérialiser de

différentes manières. Elle peut se faire directement en analysant le programme
pour le rendre indépendant du temps. Autrement dit, on cherche à faire de la
programmation dite “temps constant” (constant time programming) : c’est par
exemple le cas de Wu et al. [83] qui proposent une analyse des accès mémoire
pour améliorer cette exécution en temps constant.

D’autre part, certaines techniques ajoutent de l’aléa (randomization) afin de
perturber l’attaquant qui aura plus de difficultés pour construire son ensemble
d’éviction. Des travaux tels que RPCache [84] ou CEASER [85] proposent des
solutions qui permettent de manipuler l’index qui assigne un ensemble de ligne
de cache à une adresse donnée. D’autres travaux tels que CEASER-S [86] et
ScatterCache [87] modifient quant à eux la façon dont on peut indexer une voie
ou un groupe de voies.

Ensuite, d’autres contremesures proposent de faire un partitionnement soit
temporel, soit matériel. Pour le partitionnement temporel, on identifie par
exemple, des solutions qui étendent le jeu d’instruction pour isoler temporel-
lement les applications [88], [89]. D’autre part, les travaux avec des impacts sur
le matériel vont s’intéresser à un partitionnement par voie (NoMocache [90])
voire par ligne de cache (PLcache [84]) qui est la granularité la plus fine qu’on
puisse manipuler dans ce contexte.

4.1.2 Contexte du projet SCRATCHS
Les travaux évoqués dans la Section 4.1 font écho aux travaux de la thèse de

Nicolas Gaudin qui s’est déroulée dans le cadre du projet Side-Channel Resistant
Applications Through Co-designed Hardware/Software (SCRATCHS). Dans ce
projet, nous souhaitions mettre en place des protections contre les attaques par
canaux cachés temporels qui visent les mémoires cache pour des systèmes embar-
qués à base d’architecture RISC-V. Ce projet a été le cadre d’une deuxième thèse
qui s’intéressait plus particulièrement à des solutions principalement logicielles
[91].

La Figure 4.3 présente le système envisagé dans ce projet et dans la suite de
cette section : deux applications qui s’exécutent sur un processeur monocoeur,

4.1. Protection des mémoires caches contre les timing attacks 45

CV32E40P

L1-DL1-I

L2

main memory

victim
attacker
context switch

runsecret1

runsecret2
victim
start

�secret1

�secret2

1○ Timing attacks at
Context Switch

2○ Cache attacks

IF ID EX WB

fetch

c d

decode

RF div

LSU

E

E E

Figure 4.3 – Modèle de menaces.

une hiérarchie de cache simple, la pile logicielle est de confiance et l’attaquant
peut inférer l’état du cache avant et après l’exécution de la victime tout en étant
capable de mesurer les temps d’exécution avec les compteurs de cycles dispo-
nibles dans le processeur (ici, le processeur CV32E40P de l’OpenHW Group).

La suite de la Section 4.1 décrit la solution avec le mécanisme de verrouillage
de données étudiée dans la thèse de Nicolas Gaudin.

4.1.3 lock/unlock, un mécanisme de verrouillage de
lignes de cache

Dans les travaux existants, PLcache [84] propose déjà de verrouiller des lignes
de caches avec des instructions lock et unlock : une ligne verrouillée ne peut
être évincée par aucun process. Cependant, cette solution a ses faiblesses :
● Selon l’état du cache et celui des métadonnées de la politique de rempla-

cement, il est malgré tout possible d’extraire les données présentes dans
les lignes de cache verrouillées.
● Un accès mémoire peut contourner le mécanisme quand la politique de

remplacement vise une ligne de cache verrouillée par un autre processus.
L’utilisation d’un mécanisme de verrouillage permet d’optimiser l’utilisation

du cache en protégeant un sous-ensemble de l’espace mémoire disponible. Cette

46 4. Contributions sur la sécurité au niveau micro-architecture

approche permet que le process protégé libère les lignes verrouillées le plus vite
possible et puisse continuer son exécution. De plus, pour éviter le problème de
contournement, on conserve une ligne de cache (par conséquent non verrouillée)
afin de conserver des performances acceptables pour les applications en cours
d’exécution.

Si on considère un cache associatif à N voies et la LRU originale, la méta-
donnée associée à une voie peut être associée à N états (autrement dit, pour un
cache associatif à 4 voies, les états vont de 1 à 4). L’état est une représentation
de l’âge de la ligne de cache : 1 pour la ligne utilisée la plus récemment, 4 pour
la plus ancienne. La solution présentée dans cette section ajoute un état pour les
lignes de cache verrouillées (état égal à 0) : pour un cache à N voies, il faudra
donc N + 1 états.

La Figure 4.4 présente un cas d’étude simple pour illustrer le comportement
de la LRU pour trois accès mémoire consécutifs : un verrouillage (lock), un
accès classique (lw et un déverrouillage (unlock)) où les adresses sont dans le
même ensemble.

LRU state

way

data

4 2 1 3

|a| |b| |c| |d|

|w1||w2||w3||w4|
0 3 2 4

|e| |b| |c| |d|

|w2||w3||w4|µ

0 4 3 2

|e| |b| |c| |f|

|w2||w3||w4|µ

1 4 3 2

|e| |b| |c| |f|

|w1||w2||w3||w4|
lock @e lw @f unlock @e

Figure 4.4 – Cas d’étude.

Cette figure présente les métadonnées de la politique de remplacement (états
LRU ou LRU states) pour chaque voie d’un ensemble de lignes de cache. L’en-
semble est composé de N = 4 voies wX qui sont déjà utilisées. Avant de prendre
en compte l’accès lock @e., nous pouvons noter que la voie la moins récemment
utilisée est w1 (son état LRU est égal à 4). De plus, il n’y a pas de ligne verrouillée
(Nlock = 0 et états LRU > Nlock + 1 pour toutes les voies).

Ensuite, après avoir exécuté l’instruction lock @e, la donnée a a été évincée
et la voie w1 est désormais verrouillée (état égal à 0). De plus, les états des
autres voies non verrouillées ont été mis à jour : il reste trois candidats LRU
(état > Nlock + 1 et Nlock = 1). Comme w1 est verrouillée, elle ne peut pas être
sélectionnée par la politique de remplacement.

Après avoir chargé un mot à l’adresse f (lw @f), la donnée d a été évincée
par la donnée f et la voie w4 devient la plus récemment utilisée (état égal à 2).
Pendant ce temps, les états des voies w2 et w3 ont été mis à jour alors que la voie
w1 est restée verrouillée. Il y a toujours trois candidats pour la politique de rem-
placement. Finalement, w1 est déverrouillée en exécutant l’instruction unlock
@e et a été remise comme une candidate potentielle en étant la plus récemment

4.1. Protection des mémoires caches contre les timing attacks 47

utilisée. Du côté du logiciel, la personne qui souhaite utiliser ce mécanisme doit
l’appeler explicitement dans son code, comme cela est présenté dans le listing
4.1 et 4.2 pour le code assembleur de la fonction de verrouillage.

1 void fct(int* sensitive_table, int* input){
2 // Phase de verrouillage
3 for(int i=0; i<sizeof(sensitive_table); i+=1)
4 lock_macro(&sensitive_table, i);
5

6 // La fonction algo accède à la table dépendante du secret
7 algo(sensitive_table, input);
8

9 // Phase de déverrouillage
10 for(int i=0; i<sizeof(sensitive_table); i+=1)
11 unlock_macro(&sensitive_table, i);
12 }

Listing 4.1 – Exemple d’utilisation des instructions lock et unlock.

1 c.mv t4,a4 # déplacer l'adresse &table dans t4
2 c.mv t5,a5 # déplacer i dans t5
3 c.add t4,t5
4 lock x0,0(t4)

Listing 4.2 – Code assembleur de la macro de verrouillage lock_macro.

On aurait pu utiliser des techniques d’annotation [92] et de propagation de
teintes (comme cela a été évoqué dans la Section 2.1 ou dans l’article [93]) pour
faciliter l’insertion et le suivi de ces instructions.

4.1.3.1 Implémentation et résultats

Les développements liés à ce mécanisme de verrouillage de cache ont été
implémentés sur un processeur CV32E40P (voir Figure 4.1) qui implémente a
minima les extensions I, M et C du jeu d’instructions RISC-V. Les fuites tem-
porelles sur la micro-architecture du processeur elles-mêmes ne sont pas décrites
dans ce manuscrit même s’il en existe (par exemple, le temps d’exécution de
l’algorithme de division est dépendant de la taille des opérandes).

48 4. Contributions sur la sécurité au niveau micro-architecture

Les métadonnées des différentes voies du cache sont mises à jour à chaque
accès mémoire. Pour prendre en compte les instructions lock et unlock, il a
fallu étendre la micro-architecture du CV32E40P (notamment pour décoder ces
instructions), modifier le cache L1D ainsi que proposer une nouvelle chaîne de
compilation intégrant ces nouvelles instructions.

Le module implémentant la LRU intégrant le mécanisme de verrouillage est
composée de trois modules principaux :

● LRU state : calcule la valeur d’état minimal en fonction du nombre de
lignes de cache verrouillées et de l’instruction en cours d’exécution. Il dé-
clenche une exception lorsqu’on souhaite verrouiller un cache où toutes les
lignes le sont déjà.
● Update way et Update accessed way. Dans le cache où nous avons des

ensembles de 4 voies, le mécanisme propose 3 modules update way et 1
module update accessed way afin de mettre à jour l’état des différentes
voies.

4.1.3.2 Résultats

L’architecture composée du processeur et du cache a été implémentée sur un
FPGA Xilinx Kintex-7 et avec les outils Vivado 2022.2. La Table 4.1 présente les
résultats en surface du processeur et du cache dans deux versions : baseline qui
est la version de référence et protected qui est la version intégrant le mécanisme
de verrouillage de cache.

Table 4.1 – Résulats de synthèse pour un FPGA Kintex-7.

Cache CPU
LUTs 980 5 661

Baseline FFs 1 065 3 465
BRAMs 8,5 8,5

LUTs 1 007 (+ 2,8%) 5 683 (+ 0,7%)
Protected FFs 1 077 (+ 1,1%) 3 481 (+ 0,3%)

BRAMs 8,5 8,5

On remarque qu’on utilise le même nombre de Block RAMs (BRAMs) (blocs
mémoire qui composent le cache et servent de stockage aux métadonnées de la
LRU). Les surcoûts en surface sont quant à eux négligeables d’autant plus que
nous avons utilisé un processeur relativement simple.

Ensuite, nous avons souhaité réaliser une évaluation de la sécurité de
notre solution. Dans notre cas d’étude, nous avons pris en compte l’attaque

4.1. Protection des mémoires caches contre les timing attacks 49

Prime+Probe sur un algorithme AES-128. Plus précisément, nous nous
sommes intéressés au premier octet de la clé de chiffrement. Nous considérons
le cas d’une attaque en clair connu et où les accès à la S-Box dépendent du
message en clair et de la clé de chiffrement. La Figure 4.5 présente une analyse
Prime+Probe dans différents cas : plus le carré est foncé, plus la victime a
évincé les données de l’attaquant entre la phase de Prime et la phase de Probe.

00 40 80 c0 F0
set 1st plaintext byte

0

2

4

6

8

10

12

14

ca
ch

e
se

t

round 1
(a) Première ronde,
clé=0xFF.

00 40 80 c0 F0
set 1st plaintext byte

0

2

4

6

8

10

12

14 round 1
(b) Première ronde,
clé=0x42.

00 40 80 c0 F0
set 1st plaintext byte

0

2

4

6

8

10

12

14 round 1
(c) Deuxième ronde,
clé=0x42.

00 40 80 c0 F0
set 1st plaintext byte

0

2

4

6

8

10

12

14
0.0

0.2

0.4

0.6

0.8

1.0

(d) S-Box verrouillée en
cache, clé=0x42.

Figure 4.5 – Cartographie des résultats d’attaques en caches menées sur AES-
128.

Dans les Figures 4.5a et 4.5b, on observe des motifs facilement identifiables
après 1 ronde d’AES pour un premier octet de clé fixé à 0xFF et 0x42. Toujours
avec un premier octet fixé à 0x42, la Figure 4.5c montre le résultat après 2 rondes
d’AES : le motif est toujours visible, mais le contraste entre les carrés les plus
foncés et les plus claires est moindre : ceci est dû à la diffusion de l’algorithme
de chiffrement. Par contre, lorsque la S-Box est verrouillée en cache comme dans
la Figure 4.5d, la couleur est uniforme : en d’autres termes, l’attaquant ne peut
déduire aucune information.

Enfin, la Table 4.2 présente les pénalités en performance et les surcoûts en
surface de travaux de l’état de l’art s’intéressant aux fuites temporelles avec des
attaques en cache.

Table 4.2 – Comparaison avec d’autres solutions existantes.

Surcoûts
Contremesure Mécanisme Type Temps constant Performance Surface
Winderix et al. [94] Compiler-Assisted Hardening Logiciel Oui 19-76% 0%
[84], [85], [95] Randomization Matériel Non 1-10% 5-10%
NoMocache [90] Fixed way partitioning Matériel Non 5% -
SecDCP [96] Dynamic way partitioning Matériel Non 12% -
PLcache [84] Dynamic cache line partitioning Hybride Non 12% -
Notre contribution Dynamic cache line partitioning Hybride Oui 2% < 3%

Winderix et al. [94] présentent une solution purement logicielle où le compi-
lateur est modifié pour rendre le code à temps constant, le surcoût temporel y

50 4. Contributions sur la sécurité au niveau micro-architecture

est important (entre 19 et 76%) mais ne nécessite pas de modification du maté-
riel. Les travaux utilisant de la randomisation [84], [85], [95] ont un surcoût en
performance inférieur à 10% et un surcoût en surface de 5 à 10%. Les techniques
de partitionnement telles que NoMocache [90] ou SecDCP [96] font en sorte que
les voies soient allouées à un processus ou un ensemble de processus : la pénalité
en performance y reste convenable (inférieure à 12%). La solution la plus proche
de notre travail est PLcache mais celle-ci n’est pas à temps constant et dégrade
les performances de façon plus importante.

4.1.4 Une solution “hybride”
Les travaux présentés jusqu’à maintenant dans la Section 4.1 sont un

sous-ensemble des mécanismes de sécurité qui cherchent à protéger les caches.
D’autres travaux, basés sur une indexation asymétrique des voies comparent les
traces avant et après l’éviction de données dans un cache set pour contrer les
attaques sur le temps d’exécution. Un aléa est ajouté entre l’adresse et les index
accédés dans chaque voie. Le renouvellement de la génération d’aléa est un élé-
ment critique pour garantir la sécurité de ce type de solutions, mais implique un
surcoût en performances important (il invalide l’ensemble du cache). De plus,
ce renouvellement est spécifique à une fonction de dérivation d’index (ou Index
Derivation Function (IDF)) utilisée qui est basée sur une clé.

Nous avons donc proposé une solution hybride combinant de la randomi-
sation et du partitionnement pour garantir l’exécution en temps constant et
également empêcher la fuite du secret lorsque l’application verrouille un nombre
de lignes dépendant du secret. La Figure 4.6 présente le principe de notre solu-
tion dans laquelle une gestion asymétrique des voies est couplée au mécanisme
de verrouillage de lignes de cache.

Une IDF f est assignée à chaque voie du cache. Chaque IDF prend comme
entrée tout ou partie de l’adresse ainsi qu’une clé. L’attribution d’une clé unique
pour chaque IDF crée l’asymétrie dans le cache. On a choisi l’IDF SCARF [97]
car sa latence et son coût en surface sont faibles.

Nicolas Gaudin, le doctorant que j’ai co-encadré dans le projet SCRATCHS,
a effectué une mobilité à l’Université de la Ruhr à Bochum. Les travaux effectués
en Allemagne ont menés à une publication à la conférence AsiaCCS [98] dans
laquelle les auteurs ont analysé différentes politiques de cache dans un contexte
de réindexation asymétrique sur une attaque Prime+Prune+Probe. Nous
avons également regardé différentes politiques de remplacement, nous sommes
partis sur VARP qui manipule l’âge de la ligne de cache Cette nouvelle politique
de sécurité implique des modifications sur les mécanismes matériels de mise à
jour de voies. Les mécanismes sont décrits plus en détails dans l’article publié à
AsiaCCS en 2024 [98].

4.1. Protection des mémoires caches contre les timing attacks 51

�

�

�

Way 0 Way 1 Way 2 Way 3

fk1 fk2 fk3 fk4

Input address

Figure 4.6 – Schéma bloc du cache hybride implémentant le mécanisme de
verrouillage.

Cette solution hybride a été implémentée sur un composant FPGA Kintex-
7 avec les outils AMD Vivado 2022.2. La Table 4.3 présente les résultats de
synthèse associés : on y trouve le CPU, le coeur ainsi que le coût en surface de
la politique de remplacement pour les caches d’instructions et de données.

Table 4.3 – Résultats de surface post-implémentation sur FPGA Kintex-7.

skewed alone skewed with lock Overhead
LUTs FFs BRAMs LUTs FFs BRAMs LUTs FFs

88 VARP-64 94 85 2 100 89 2 + 6,38% + 4,71%
8 Data Cache 3 301 1 297 18 3 308 1 302 18 + 0,21% + 0,38%

88 VARP-64 94 85 2 96 89 2 + 2,13% + 4,71%
8 Instr Cache 2 685 1 200 18 2 687 1 204 18 + 0,07% + 0,33%

8 Core 4 655 2 251 0 4 619 2 252 0 - 2,18% + 0,04%

CPU 10 657 5 006 36 10 630 5 017 36 - 0,25% + 0,18%

Le cache d’instructions ne supporte pas les instructions lock et unlock d’où
la différence mineure avec 4 LUTs de moins en comparaison avec l’implémenta-
tion dans le cache de données. La capacité des mémoires BRAMs du composant
est suffisante pour stocker les données et les métadonnées sans avoir besoin de
rajouter un bloc supplémentaire.

52 4. Contributions sur la sécurité au niveau micro-architecture

4.2 Protection des mémoires avec l’introduc-
tion de TEE

La Section 4.1 présente une étude de mécanisme de sécurité au niveau des
mémoires caches qui s’est effectuée dans le cadre du projet SCRATCHS, mais
qui est en train d’être étendue avec un ingénieur pour avoir un démonstrateur
plus complet avec un processeur capable de faire tourner un noyau Linux.

Dans la suite de mes travaux de recherche, je souhaite continuer dans ce type
d’études de sécurité sur la microarchitecture. Du fait que mes activités passées
et actuelles sont à la frontière entre le logiciel et le matériel, j’ai commencé
à m’intéresser aux problématiques de sécurité des environnements d’exécution
sécurisés (ou TEE). Un premier projet, financé par l’ANR, va me permettre
d’étudier l’exploitation de ces mécanismes.

4.2.1 Problématique
Les travaux que j’initie autour de la sécurité et des TEEs se déroulent dans le

cadre du projet ANR Secure-by-Design Computing Against Microarchitectural
Attacks (SCAMA). Il s’agit d’un projet dans lequel nous souhaitons apporter des
fonctions de sécurité dès la conception du circuit. Dans ce projet, nous sommes
partis du constat que des attaques récentes telles que Spectre [99] ou Meltdown
[100] ont montré que le matériel, qui est souvent considéré comme étant une
couche qui exécute correctement les instructions, peut faire fuiter des informa-
tions sensibles relatives au logiciel. De plus, les architectures modernes peuvent
ne pas être entièrement documentées : les éléments ou modules non documen-
tés peuvent alors être exploités par un attaquant pour créer une attaque sur la
microarchitecture.

Nous souhaitons apporter une réponse à la question suivante : “Quel niveau
de sécurité doit-on introduire dans la conception d’un système sur puce tout en
garantissant ses performances ?” Les réponses apportées doivent être :

● Pratiques : autrement dit, ne pas dégrader les performances.
● Extensibles : afin de pouvoir s’adapter à des attaques diverses sur la mi-

croarchitecture visée.
● Suffisamment génériques pour pouvoir s’adapter à différentes plateformes.

Les solutions apportées dans le projet vont impacter autant les couches maté-
rielles que les couches logicielles d’une plateforme que nous développer avec un
processeur RISC-V implémenté sur un composant reconfigurable FPGA. Le pro-
jet peut se décomposer en trois grandes étapes réalisées par trois des partenaires
du projet.

4.2. Protection des mémoires avec l’introduction de TEE 53

Tout d’abord, une détection automatisée des attaques temporelles possibles
sur les caches d’une plateforme implémentée dans le simulateur gem5 1. Cette
étape, réalisée par des partenaires au laboratoire LTCI de Télécom Paris, devra
permettre d’identifier des vulnérabilités sur des composants qui peuvent ne pas
être documentés comme expliqué dans l’introduction de cette section. Dans une
première contribution [101], le doctorant impliqué sur cette partie a déjà proposé
un ensemble de simulations d’attaques visant des architectures x86 et ARM afin
de montrer qu’il est possible d’identifier des suites d’instructions pouvant être
utilisés pour automatiser la détection d’attaques.

Les autres étapes du projet consistent à réaliser des mécanismes de protection
matériels et logiciels. Les mécanismes matériels seront réalisés par le laboratoire
Hubert-Curien de Saint-Etienne : cela comprendra l’implémentation matérielle
du modèle de détection développé par Télécom Paris ainsi que le développement
de contre-mesures dont la nature exacte reste encore à déterminer.

Enfin, la contribution du Lab-STICC (entre l’ENSTA Brest et l’Université
de Bretagne-Sud à Lorient), à laquelle je contribue, s’intéresse aux mécanismes
de protection logiciels. Nous envisageons de mettre en place un TEE ainsi que
l’utilisation de compilation à la volée (ou JIT) pour avoir des contre-mesures à
la demande pour différentes parties du code exécutable. Le reste de la Section
4.2 donne quelques

4.2.2 Environnements d’exécution sécurisés pour archi-
tecture RISC-V

Les TEEs sont des environnements d’exécutions sécurisés qui permettent
d’isoler des parties de logiciels appelées enclaves. Ces environnements sont dis-
ponibles sur plusieurs architectures : parmi les implémentations les plus connues,
on peut citer SGX [102] et TDX [103] pour Intel et TrustZone [104] pour ARM.
Bien qu’ayant pour but de protéger du logiciel, les TEEs se basent souvent sur
des éléments matériels intégrés dans le processeur.
● Pour SGX, de nouvelles instructions et de nouveaux registres ont été ajou-

tés pour gérer le cycle de vie des enclaves ainsi que des modules maté-
riels permettant de générer des signatures pour identifier les différentes
enclaves.
● Pour TrustZone, on y trouve également de nouveaux registres ainsi qu’un

bit supplémentaire (le NS bit, pour Non-Secure bit) qui permet de diffé-
rencier les mondes sécurisé et non-sécurisé.

En ce qui concerne les TEEs compatibles avec l’architecture RISC-V, il en existe
plusieurs parmi lesquelles Penglai [105], Keystone [30], Hex Five MultiZone [106]

1. https://www.gem5.org/

https://www.gem5.org/

54 4. Contributions sur la sécurité au niveau micro-architecture

et Sanctum [107] (la Table 2 de l’article [108] de Munoz et al donne une vue plus
exhaustive des solutions disponibles). Dans le cadre des travaux liés au projet
ANR SCAMA, nous avons d’abord dû faire un premier état des lieux des TEEs
existants et d’étudier certaines de leurs propriétés.

La Table 4.4 présente quelques TEEs existants visant une architecture RISC-
V. Tout d’abord, en ce qui concerne la scalabilité des solutions proposées, le
nombre d’enclaves est limité sauf pour TIMBER-V [109] et Penglai [105] : dans
Sanctum, le nombre d’enclaves est lié au nombre de régions DRAM ; dans CURE,
l’arbitre matériel limite à 13 régions possibles ; Keystone, dont les mécanismes
sont basés sur les registres PMP du processeur, est par conséquent limité à un
nombre d’enclaves égal au nombre de régions PMP (16 pour le processeur CVA6).
Concernant les mécanismes de sécurité, deux solutions proposent des mécanismes
de chiffrement et d’intégrité des enclaves : Penglai (inclus par défaut) et Keystone
(en option).

Table 4.4 – Comparaison non exhaustive de TEEs pour l’architecture RISC-V
(adapté de [105]).

Scalabilité Sécurité
ImplémentationNom Nombre Granularité Chiffrement Intégrité

d’enclaves mémoire mémoire mémoire

Sanctum [107] Régions DRAM Région 7 7 Rocket
TIMBER-V [109] Illimité Page 7 7 Spike

Keystone [30] PMPs Région On-chip On-chip QEmu et CVA6
CURE [110] 13 Région 7 7 Rocket
Penglai [105] Illimité Page 3 3 QEmu

Nous n’en sommes qu’au début du projet, nous n’avons pas encore défini les
limites définitives du système qui sera développé d’ici à la fin du projet ANR
SCAMA. Le choix du TEE à utiliser pour un premier démonstrateur dans le
projet ANR SCAMA a été motivé par le fait d’avoir une implémentation sur carte
FPGA. Dans cette optique, les solutions Sanctum, Keystone et CURE se sont
révélées les plus intéressantes, car elles ont été validées sur des implémentations
matérielles de processeur RISC-V. Le TEE Keystone a finalement été choisi,
car il a non seulement été validée sur l’émulateur QEmu mais également sur
l’implémentation CVA6 de l’OpenHW Group : les travaux actuels autour de la
protection des caches présentés dans la Section 4.1 vont être réalisés sur cette
même implémentation, on imagine donc une mise en commun de la plateforme
entre ces deux projets qui permettrait de tirer profit de nos connaissances autour
de ce processeur.

4.2. Protection des mémoires avec l’introduction de TEE 55

4.2.3 Solution envisagée
On envisage d’intégrer différentes contre-mesures dans les enclaves parmi

lesquelles :
● Exécution en temps constant : Permet de s’assurer que les temps

d’accès aux caches sont indépendants de la donnée secrète. Cette technique
est utilisée par exemple dans des algorithmes de chiffrement Advanced
Encryption Standard (AES) pour éviter une fuite de la clé en étudiant les
variations temporelles [80].
● Injection de bruit : On introduit une part d’aléa dans les mesures de

temps ou dans les accès aux données partagées. [111] présente une tech-
nique de ce type qui est utilisée dans des systèmes temps-réel et des sys-
tèmes embarqués sécurisés.
● Déterminisme forcé : L’objectif de cette technique est de se défaire

des variations de temps qu’un attaquant pourraient exploiter. [112], [113]
évoque ce mécanisme pour la sécurité des machines virtuelles et de l’infor-
matique dans les nuages.
● Partitionnement temporel : La maîtrise des accès aux ressources parta-

gées (d’un point de vue temporel). Cette approche est utilisée notamment
dans des travaux implémentant du cache flushing [114] et des execution
leases [115], un mécanisme qui permet de vérifier que les flux d’informa-
tions sont sûrs, et ce, jusqu’aux couches matérielles.
● Partitionnement matériel : Une isolation des couches matérielles pour

s’assurer que chaque process à son propre espace dédié. On retrouve cela
dans du cache locking [84], du cache coloring [116], ou du quasi-partitioning
[117].

La suite de l’étude de cette solution se décomposera en plusieurs étapes :
● Une étude des différentes contre-mesures tant d’un point de vue sécurité

que d’un point de vue performances. L’objectif est de définir le meilleur
compromis entre la sécurité d’une enclave et ses performances. Nous étu-
dierons également avec attention l’impact des mécanismes sur l’environ-
nement logiciel (par exemple, nécessité d’avoir un compilateur spécifique)
et sur la plateforme matérielle (registres supplémentaires ou modifications
du pipeline du processeur).
● La définition d’un prototype avec plusieurs enclaves, chacune proposant

une seule contremesure.
● Enfin, nous étudierons la possibilité de pouvoir changer le mécanisme de

sécurité intégré à une enclave en cours d’exécution grâce à la compilation
JIT, une technique que nous avons déjà étudié dans le cadre des travaux
de la thèse de Quentin Ducasse présentés dans la Section 2.2.

56 4. Contributions sur la sécurité au niveau micro-architecture

4.3 Conclusion et perspectives
Les travaux présentés dans cette section est une synthèse des travaux de

Nicolas Gaudin sur le projet Cominlabs SCRATCHS (publications liées présentes
en annexe A.2) et des travaux de la thèse d’Oussama Elmnaouri débutée fin 2024
sur le projet ANR SCAMA (publications en annexe A.2).

Sauvegarde des verrous en cache
Dans la Section 4.1, nous avons proposé une solution hybride qui associe

une technique de verrouillage de lignes de cache et un ajout d’aléa grâce à une
politique de remplacement particulière. Cela permet d’ajouter une couche de
sécurité supplémentaire au niveau de la micro-architecture des caches dans un
processeur embarqué RISC-V. D’autres travaux sont en cours afin de porter ces
mécanismes sur un processeur CVA6 : un processeur RISC-V 64 bits capable de
faire tourner un noyau Linux ; le postdoctorant impliqué sur cette extension du
projet SCRATCHS devrait également étudier l’implémentation d’un module de
sauvegarde des verrous en cache qui viendrait résoudre le problème d’invalidation
totale du cache lors du renouvellement de clé de l’IDF.

Travaux autour des TEEs
Les travaux de la thèse d’Oussama Elmnaouri présentés dans la Section 4.2

ont démarré il y a environ un an à l’heure de l’écriture de ce manuscrit. Dans
le cadre de la thèse, nous sommes en plus en train d’étudier une contribution
qui serait un compromis entre les approches HybCache [118] et “Composable
cachelets” [119]. HybCache propose une architecture avec un partitionnement
statique des voies où le cache aurait des contremesures pour un code s’exécutant
dans un domaine isolé, contrairement à des exécutions non isolées où le cache
se comporterait normalement. L’approche présentée dans [119] propose, quant à
elle, un partitionnement sous forme de “cachelet” (un sous-ensemble de lignes)
pour chaque enclave. Les deux solutions ont été étudiées pour une architecture
x86, même si HybCache est indépendant de l’architecture. On souhaiterait étu-
dier une solution qui associe un partitionnement dynamique à un grain fin tout
en conservant une isolation forte pour le code de chaque enclave.

D’autre part, un postdoc est en cours de recrutement pour proposer des
mécanismes matériels qui permettront d’améliorer la sécurité des attaques par
canaux cachés sur des TEEs pour l’architecture RISC-V. Nous avons déjà iden-
tifié quelques travaux existants [120], [121] et nous aimerions aller plus loin dans
le cadre de ce postdoc. Cela me permettrait à la fois d’approfondir mes connais-
sances dans le domaine des TEEs tout en collaborant avec mon doctorant.

Chapitre 5

Conclusion et perspectives

5.1 Conclusion
Dans ce manuscrit, j’ai présenté une synthèse des différents travaux autour de

la sécurité dans les systèmes embarqués que j’ai pu aborder pendant mes années
d’enseignant-chercheur à CentraleSupélec puis à l’ENSTA. Dans ce document,
il me semblait plus pertinent de ne pas procéder par ordre chronologique, mais
plutôt avec un classement thématique. Les activités menées dans ma thèse de
doctorat étaient plus focalisées sur l’implémentation de mécanismes de sécurité
dans des composants reconfigurables FPGA. Dès mes débuts à CentraleSupélec,
les travaux ont commencé à associer des contributions sur la couche matérielle
et d’autres sur la couche logicielle.

Le manuscrit a montré que le logiciel et le matériel sont aujourd’hui indisso-
ciables lorsque l’on s’intéresse à la sécurité des systèmes embarqués et que cette
thématique peut s’aborder à différents niveaux :

● Haut-niveau (voir chapitre 3) dans la mesure où les travaux abordent l’im-
plémentation et l’étude de blocs matériels pour des problématiques de sé-
curité au sein d’une passerelle sécurisée ou en support d’une intrusion de
détection dans une meute de drones.
● À un niveau que je qualifierais d’intermédiaire comme cela a été étudié

dans le chapitre 2 où les interactions entre le matériel et le logiciel sont les
plus fortes.
● Enfin, dans le chapitre 4, des travaux au niveau de la micro-architecture

et plus particulièrement autour des mémoires cache ont été abordés.

Certains travaux sont toujours en cours et vont m’amener à approfondir cer-
tains sujets dans les années à venir, ces sujets sont détaillés dans les perspectives
(Section 5.2).

58 5. Conclusion et perspectives

5.2 Perspectives
Toujours dans un objectif de sécurisation des codes sur du matériel embarqué,

il existe des TEEs similaires à TrustZone mais pour architecture RISC-V (par
exemple, Keystone 1 ou HexFive Multizone 2). Les travaux possibles autour de
ces environnements d’exécution sécurisés sont multiples :

— Concernant le côté matériel, certains processeurs tels que le CV32E40S 3

de l’OpenHwGroup ont un support partiel de ce type de TEE. Il serait
intéressant de développer une preuve de concept d’environnement sécurisé
sur ce processeur embarqué. Cette plateforme pourrait alors servir de base
à des travaux complémentaires tant sur le volet logiciel que matériel.

— Dans la thèse de Quentin Ducasse, nous avons étudié une contre-mesure
de sécurité à deux “domaines” (ou niveaux de sécurité, de manière simi-
laire à une TEE ARM TrustZone). Les TEEs type Keystone étant open-
source, j’aimerais étudier la possibilité de pouvoir faire une protection
de code “multi-domaine” ce qui pousserait à étudier à la fois des aspects
sécurité, mais également l’optimisation de ce mécanisme sur un compo-
sant reconfigurable (utilisation des mémoires, résilience des paramètres
de configuration de ce TEE, temps de traitement).

Concernant la sécurité sur la micro-architecture des processeurs, nous avons
récemment obtenu une extension du projet Cominlabs SCRATCHS qui nous
permettra d’embaucher un ingénieur pendant un an afin d’arriver à un démons-
trateur complet de la plateforme contenant des contributions des deux thèses du
projet. Les travaux menés dans ce projet vont avoir une action double à moyen
terme :

— La plateforme développée dans SCRATCHS devrait être réutilisée comme
base pour le projet ANR SCAMA qui a démarré récemment. Il s’agit d’un
projet qui inclut les laboratoires LTCI à Paris (coordinateur du projet),
Hubert-Curien à Saint-Étienne et LIRMM à Montpellier. Ce projet a
pour objectif de proposer des mécanismes hybrides (logiciels et matériels)
contre les vulnérabilités sur la micro-architecture d’un processeur RISC-
V, les vulnérabilités ayant été remontées dans un premier par des outils
d’apprentissage profond.

— Cette plateforme pourra de même ensuite être utilisé pour des extensions
sur le projet : pour l’instant, on y utilise un processeur embarqué. On
pourrait être amené à étudier quelles seraient les fuites dans un composant
multicoeurs et multitâches, toujours basé sur l’architecture RISC-V qui

1. https://keystone-enclave.org/
2. https://hex-five.com/multizone-security-tee-riscv/
3. https://github.com/openhwgroup/cv32e40s

https://keystone-enclave.org/
https://hex-five.com/multizone-security-tee-riscv/
https://github.com/openhwgroup/cv32e40s

5.2. Perspectives 59

nous permet d’avoir des outils pour étudier finement les problématiques
de sécurité par canaux cachés.

Dans l’objectif d’approfondir mes connaissances sur les attaques sur la micro-
architecture, je souhaite également étudier les possibilités d’attaques sur des
systèmes d’enclaves et de TEE [122]-[124] avec des contre-mesures qui seraient
potentiellement matérielles avec du logiciel bas-niveau.

Dans l’article BUSted [125], une équipe de l’université de Minho au Portugal
a proposé d’analyser les variations temporelles de la logique d’arbitrage du bus
de données sur des familles de microcontrôleurs pour contourner les mécanismes
de protection de la mémoire. Ces travaux ont été menés principalement sur des
architectures ARM, un composant RISC-V (GigaDevice GD32VF103) a égale-
ment été analysé. Une étude au croisement de BUSted [125] et les travaux de
Zonta et al. [71] pourrait mettre en valeur des failles sur la micro-architecture de
certaines architectures RISC-V implémentées sur un composant reconfigurable
FPGA.

Un troisième volet de mes activités de recherche sera un peu plus haut niveau
où j’étudierais des applications de sécurité où un composant matériel peut être
utile. C’est le cas de la thèse qu’on vient de démarrer dans la Chaire de Cyber-
défense des systèmes navals : dans une flotte de drones (marins et terrestres),
nous souhaitons étudier comme les algorithmes d’apprentissage peuvent être uti-
lisés pour des sondes de détection d’intrusion IDS. Dans ce cadre applicatif, il est
intéressant de vouloir accélérer les calculs et d’implémenter cela sur une architec-
ture embarquée sur les drones. Lorsque nous aurons un premier démonstrateur
avec une détection d’intrusion fonctionnelle, un des objectifs est de s’intéresser
des “poisoning attacks” [126], [127] et de voir s’il serait possible d’intégrer des
contremesures dans le matériel pour mieux résister à ce type d’attaques.

Nous avons initié une collaboration avec Naval Group dans le cadre de la chaire
de cyberdéfense des systèmes navals. De plus, Thales est une autre entreprise
importante dans le monde de la sécurité embarquée et en particulier dans l’éco-
système OpenHwGroup. Dans les futurs projets, je compte renforcer mes col-
laborations avec des industriels et des organismes de défense. De même, bien
que mes collaborations à l’international soient peu nombreuses pour l’instant, je
chercherais à les construire dans les années à venir.

60 5. Conclusion et perspectives

Toutes ces activités de recherche seront supports de publications dans les
revues et les conférences relatives aux GDR Sécurité Informatique et GDR SoC2

(les architectures reconfigurables font partie de ce dernier). En plus des publica-
tions, je prêterais un oeil attentif au partage des codes qui permettent d’obtenir
les résultats : ce sont des aspects que j’ai expérimentés dans mon activité de
relecteur d’artefact et dans la thèse de Quentin Ducasse (évoquée plus tôt dans
cette section) avec lequel nous avons diffusé plusieurs outils relatifs à ses tra-
vaux 4 5.

4. https://github.com/QDucasse/jitdomain-tests
5. https://github.com/QDucasse/gigue

https://github.com/QDucasse/jitdomain-tests
https://github.com/QDucasse/gigue

Liste d’abréviations

AES Advanced Encryption Standard . 55
ALU Arithmetic Logic Unit . 8
APB Advanced Peripheral Bus . 11
AST Abstract Syntax Tree . 15
AXI Advanced eXtensible Interface . 31
BBP BaseBand Processor . 28
BRAM Block RAM . 48
CDI Core Debug Interface . 9
CFG Control-Flow Graph . iii
CFI Control-Flow Integrity . 17
CNN Convolutional Neural Network . 36
CPI Cycles Per Instruction . 23
CPU Central Processing Unit . 42
CSR Control and Status Register . 22
CTI Cross Trigger Interface . 11
CTM Cross Trigger Matrix . 11
DA Deep Autoencoder . 36
DAP Debug Access Port . 11
DBT Dynamic Binary Translation . 7
DBM Deep Boltzmann Machine . 36
DBN Deep Belief Network . 36
DDTC Device Directory Table Cache 32
DEP Data Execution Prevention . 17
DIFT Dynamic Information Flow Tracking i
DMA Direct Memory Access . 29
DMP Domain Memory Protection . 22
DNN Deep Neural Network . 36
DPR Dynamic Partial Reconfiguration 29
ECT Embedded Cross Trigger . 11
ETB Embedded Trace Buffer . 13

62 Liste d’abréviations

ETM Event Trace Macrocell . 9
FIFO First In First Out . 11
FF Flip-Flop . 48
FL Federated Learning . 37
FPGA Field Programmable Gate Array v
FTM Fabric Trace Monitor . 11
GEMM GEneral Matrix Multiplication 38
GEMV GEneral Matrix-Vector multiplication 38
GPP General Purpose Processor . 28
GPU Graphics Processing Unit . 30
HA Hardware Accelerator . iii
HWPE Hardware Processing Engine . 40
IA Intelligence Artificielle . 35
IDF Index Derivation Function . 50
IDS Intrusion Detection System . 35
IFT Information Flow Tracking . 6
IOMMU Input Output Memory Management Unit iii
IOTLB Input Output Translation Lookaside Buffer 30
IOVA Input Output Virtual Address . 30
IP Intellectual Property . 31
ISA Instruction Set Architecture . 25
ITM Instrucmentation Trace Macrocell 11
JIT Just-in-Time . 15
LHA Legitimate Hardware Accelerator iv
LLVM Low-Level Virtual Machine . 10
LRU Least Recently Used . 42
LUT Look-Up Table . 24
MAC Multiply and ACcumulate . 31
MHA Malicious Hardware Accelerator iv
ML Machine Learning . 36
MMU Memory Management Unit . 30
MPK Memory Protection Key . 17
MVU Matrix Vector Unit . 38

63

OS Operating System . 6
PFT Program Flow Trace . 14
PiM Processing-in-Memory . 38
PL Programmable Logic . iii
PMP Physical Memory Protection . 22
PS Processing System . iii
PTM Program Trace Macrocell . 9
RAM Random Access Memory . 34
RBM Restricted Boltzmann Machine 36
RF Random Forest . 37
RL Reinforcement Learning . 36
RNN Recurrent Neural Network . 36
ROP Return-Oriented Programming . 16
RTL Register-Transfer Level . 31
SAM Secure Authentication Module . 31
SCAMA Secure-by-Design Computing Against Microarchitectural At-

tacks . 52
SCRATCHS Side-Channel Resistant Applications Through Co-designed

Hardware/Software . 44
SoC System-on-Chip . iii
TEE Trusted Execution Environment v
TPIU Trace Port Interface Unit . 13
TRI Translation Request Interface . 32
TRF Tag Register File . 14
VM Virtual Machine . 15

Annexes

Annexe A

Informations complémentaires

A.1 CV résumé

Expériences professionnelles
2019 - . . . Enseignant-chercheur à l’ENSTA Bretagne (désormais ENSTA,

campus de Brest) et au laboratoire Lab-STICC (Brest, France).
2017 - 2019 Ingénieur en logiciel embarqué chez Thales (Cholet, France).
2014 - 2017 Enseignant-chercheur à CentraleSupélec, campus de Rennes et

à l’IETR (Rennes, France).

Diplômes
2012 Thèse de doctorat (Université de Bretagne-Sud, Lorient, France).
2009 Diplôme d’ingénieur spécialité optoélectronique (Télécom Saint-

Étienne, Saint-Étienne, France).
2008 Bachelor of Engineering in Electronic Engineering (University of South

Wales, Royaume-Uni).

A.2 Liste des thèses co-encadrées

Thèses en cours
1. 11/2024 - . . . Oussama Elmnaouri (Projet ANR SCAMA)

● Software Mitigations for Cache and Covert Timing SCAs. Lab-
STICC, ENSTA. Encadrée à hauteur de 30%.
● Directeur de thèse : Loïc Lagadec (Professeur, ENSTA). Co-

encadrants : Vianney Lapôtre (Université de Bretagne-Sud).
● Publications associées : [128], [129].

2. 11/2023 - . . . Pierre Garreau (Chaire de Cyberdéfense des Sys-
tèmes Navals)
● Embedded IDS for RISC-V targeting drone systems. Lab-STICC,

ENSTA. Encadrée à hauteur de 25%.

68 A. Informations complémentaires

● Directeur de thèse : Loïc Lagadec (Professeur, ENSTA). Co-
encadrants : Jean-Christophe Cexus (Professeur, ENSTA) et Julien
Francq (Naval Group).
● Publications associées : [130], [131].

3. 2022 - . . . Aya Jendoubi (ANR TrustGW)
● Enhancing Security in Heterogeneous Virtualized Systems : A Focus

on I/O Attacks in the existence of IOMMU in a RISC-V architec-
ture. IETR, INSA Rennes. Encadrée à hauteur de 20%.
● Directeur de thèse : Jean-Christophe Prévotet (professeur, INSA

Rennes). Co-encadrant : Philippe Tanguy (Maître de Conférences,
Université de Bretagne-Sud).
● Publications associées : [132], [133].

Thèses soutenues
1. 2021 - 2024. Nicolas Gaudin (Cominlabs SCRATCHS)

● Security mechanisms against timing cache attacks. Lab-STICC,
Université de Bretagne-Sud. Encadrée à hauteur de 40%.
● Directeur de thèse : Guy Gogniat (Université de Bretagne-Sud).

Co-encadrant : Vianney Lapôtre (Université de Bretagne-Sud).
● Publications associées : [98], [134]-[136].

2. 2021 - 2024. Quentin Ducasse (Brest Métropole et Pôle d’Ex-
cellence Cyber)
● Low-level JIT security mechanisms for VMs running on RISC-V

processors. Lab-STICC, ENSTA Bretagne. Encadrée à hauteur de
50%.
● Directeur de thèse : Loïc Lagadec (Professeur, ENSTA).
● Publications associées : [33], [137]-[140].
● Publication en cours de révision : [39].

3. 2015 - 2018. Muhammad Abdul Wahab (Cominlabs HardBlare)
● Hardware support for the security analysis of embedded softwares :

applications on information flow control and malware analysis.
IETR, CentraleSupélec Rennes. Encadrée à hauteur de 50%.
● Directeur de thèse : Christophe Moy (Professeur, Université de

Rennes). Co-encadrant : Guillaume Hiet (INRIA Rennes).
● Publications associées : [141]-[152].

4. 2015 - 2020. Mounir Nasr Allah (Cominlabs HardBlare)

A.3. Jurys et expertises 69

● HardBlare - Information flow tracking through static and dynamic
analysis. INRIA, CentraleSupélec Rennes. Encadrée à hauteur de
20%.
● Directeur de thèse : Ludovic Mé (Professeur, INRIA Rennes). Co-

encadrant : Guillaume Hiet (INRIA Rennes).

A.3 Jurys et expertises
CSI

1. Mahreen Khan (LabSoC, Télécom Paris). Analyse des architectures ma-
térielles de type RISC-V, défenses contre certains canaux cachés, notam-
ment les attaques via les mémoires caches. Mahreen Khan a commencé
sa thèse en 2024, son deuxième CSI a eu lieu début juin 2025.

Expertise de projets
J’ai été expert externe pour l’évaluation de 2 projets ANR en 2022 et 2024.

Participation aux comités de programme
J’ai participé à 18 comités de programmes parmi lesquels :
● 2026 : NDSS.
● 2024, 2023, 2022, 2021, 2020, 2019 : LASCAS.
● 2024, 2023, 2022 : Baltic Electronics Conference.
● 2024 : ACSAC.
● 2024 : IEEE CSR HACS.
Une autre fonction est la participation en tant que Artifact Evaluation Com-

mittee (AEC). Ce rôle est relativement nouveau : une fois les papiers acceptés,
les auteurs sont invités à soumettre des artefacts qui doivent permettre de repro-
duire les résultats. Au-delà de la pure production du code, une part importante
de la notation est également accordée à la documentation qu’on retrouve le plus
souvent dans un dépôt mis à disposition par les auteurs. Certaines conférences
renommées dans le domaine de la sécurité ont d’ailleurs mis en place le site “Se-
curity Research Artifacts” qui explique ce qui est attendu dans ces soumissions
d’artefacts.

https://www.ndss-symposium.org/ndss2026/
https://ieee-lascas.org/
https://taltech.ee/en/bec2024
https://www.acsac.org/2024/committees/program/
https://www.ieee-csr.org/hacs/
https://secartifacts.github.io/
https://secartifacts.github.io/

70 A. Informations complémentaires

Je suis membre d’AEC dans les conférences de sécurité suivantes :
● 2025, 2024, 2023 : Usenix. J’ai d’ailleurs obtenu un “Distinguished Revie-

wer Awards” pour l’édition 2024.
● 2025, 2024, 2023 : CCS.
● 2024 : ACSAC.

A.4 Responsabilités scientifiques

Financements nationaux
1. ANR SCAMA (2024 à 2028).

● Subvention de 200.000 euros environ. Cette subvention permet de
financer une thèse complète ainsi que les coûts associés. La thèse
va démarrer en novembre 2024.
● Responsable d’un lot de travail.
● Responsable du projet par intérim (indisponibilité de la porteuse

pendant 6 mois).
2. ANR TrustGW (2022 à 2025).

● Subvention pour amortir les déplacements liés au projet.
● Responsable d’un lot de travail sur la mise en œuvre du démons-

trateur final.
● Co-encadrement de la thèse d’Aya Jendoubi (IETR Rennes).

Financements collectivités locales (région, métropole de
Brest, Pôle d’Excellence Cyber)

1. Chaire de cyberdéfense des Systèmes Navals (2023 à 2026). Subvention
pour la thèse complète de Pierre Garreau, avec un co-encadrement Naval
Group.

2. Labex Cominlabs SCRATCHS (2021 à 2025). Subvention pour le finan-
cement d’une thèse (Nicolas Gaudin). Co-encadrement avec Guy Gogniat
et Vianney Lapôtre (Lab-STICC).

3. Demi-financement Brest Métropole et demi-financement par le Pôle d’Ex-
cellence Cyber (2021 à 2024). Subvention pour la thèse de Quentin Du-
casse.

4. Pôle d’Excellence Cyber (2017).

https://www.usenix.org/conference/usenixsecurity24/call-for-artifacts#evaluation-committee
https://secartifacts.github.io/usenixsec2024/awards#-distinguished-reviewer-awards
https://secartifacts.github.io/usenixsec2024/awards#-distinguished-reviewer-awards
https://www.sigsac.org/ccs/CCS2024/call-for/call-for-artifacts.html
https://www.acsac.org/2024/submissions/artifacts_competition/

A.5. Responsabilités administratives 71

● Subvention pour une thèse sur le thème “Conception et réalisa-
tion de solutions matérielles/logicielles sur plateformes SoC de
crypto-systèmes basés chaos pour des objets connectés sécurisés”
co-encadrée avec Olivier Desforges (INSA Rennes) et Safwan El
Assad (Polytech Nantes).

● Encadrement de la thèse abandonné suite à mon départ dans le
privé en 2017.

5. Labex Cominlabs HardBlare (2015 à 2020).

● Subvention pour le financement de deux thèses.

● Co-encadrement des deux thèses avec Guillaume Hiet (INRIA
CIDRE).

Financements sans candidats
Je note dans cette partie les financements obtenus, mais qui n’avaient mal-

heureusement pas trouvé de candidats dans les délais impartis.

1. PEPR ARSENE (2023). Financement complet d’une thèse dirigée par
Arnaud Tisserand dans laquelle j’aurais été co-encadrant. Le financement
de cette thèse devrait être transformé en financement d’un postdoc pour
travailler sur un sujet équivalent.

A.5 Responsabilités administratives

Responsabilités en cours et futures
2024 - . . . Correspondant ENSTA pour le parcours de formations en Cyber-

sécurité CyberSkills4All. Il s’agit d’un des projets lauréats du programme
“Compétences et métiers d’avenir” de France 2030 : le programme dé-
marre à peine, on sait qu’il y aura deux micro-formations à monter à
l’ENSTA Brest.

2024 - . . . Correspondant STIC (Sciences et Technologies de l’Information
et de la Communication) pour un cursus spécialisé “défense et sécurité”
à destination des élèves militaires de l’établissement qui résulte de la fu-
sion ENSTA Bretagne / ENSTA Paris (diplôme co-accrédité avec l’ISAE-
Supaero).

2022 - . . . Responsable de la filière par apprentissage en “systèmes embar-
qués” à l’ENSTA.

https://profericmartin.wordpress.com/titre-1/
https://www.ensta-bretagne.fr/fr/devenez-ingenieur-en-systemes-embarques

72 A. Informations complémentaires

Responsabilités passées
2020-2021 Coresponsable du mastère spécialisé “Cybersécurité des sys-

tèmes maritimes et portuaires” avec l’IMT Atlantique.

A.6 Synthèse des enseignements

Volume horaire
Le tableau A.1 présente une synthèse de mes charges d’enseignements année

par année. L’ENSTA Bretagne et l’ENSTA Paris ayant fusionné début 2025 pour
former une seule ENSTA, le nom de l’établissement a été modifié en conséquence.

Table A.1 – Synthèse des charges d’enseignements.

Année Établissement Charge (h ETD) Niveau

2014/2015 CentraleSupélec Rennes 192 L3 à M2
2015/2016 CentraleSupélec Rennes 192 L3 à M2
2016/2017 CentraleSupélec Rennes 192 L3 à M2
2019/2020 ENSTA Bretagne 200 L3 à M2
2020/2021 ENSTA Bretagne 213 L3 à M2
2021/2022 ENSTA Bretagne 310 L3 à M2
2022/2023 ENSTA Bretagne 316 L3 à M2
2023/2024 ENSTA Bretagne 310 L3 à M2
2024/2025 ENSTA 214 L3 à M2

Vue par matière

Table A.2 – Synthèse par matière.

Année Niveau Diplôme Intitulé Nature Volume
horaire
annuel

2019/2025 L3 FIPA Introduction aux réseaux CM - TD - TP 30
2020/2025 M1 FIPA C embarqué CM - TD 30
2019/2025 L3 FISE Introduction aux réseaux CM - TD - TP 30
2022/2025 M2 FIPA OS embarqué et temps réel CM - TP 30
2022/2025 M2 FIPA Calcul intensif embarqué CM - TD 30
2019/2025 L3 FISE Introduction à la programmation TD 12
2019/2025 M2 FISE Sécurité appliquée aux réseaux CM - TD - TP 30

https://www.imt-atlantique.fr/fr/formation/masteres-specialises/cybersecurite-systemes-maritimes-portuaires

A.6. Synthèse des enseignements 73

Dans le tableau A.2, j’ai mis uniquement les enseignements relatifs à
l’ENSTA. FIPA est le diplôme par apprentissage spécialisé en systèmes embar-
qués ; FISE est le diplôme d’ingénieur généraliste, j’intervenais essentiellement
dans la voie d’approfondissement CSN (Conception de Systèmes Numériques).
Les volumes horaires indiqués sont des heures réelles et les volumes sont ceux de
la dernière année d’enseignement (ceux-ci ont pu varier d’1 ou 2 séances d’une
année sur l’autre). Ce tableau ne contient pas les charges annexes telles que
la surveillance d’examen ou les décharges octroyées aux responsables de filière
(ce qui est mon cas avec la filière par apprentissage en systèmes embarqués à
l’ENSTA).

Bibliographie

[1] Nickolai Zeldovich, “Securing Untrustworthy Software Using Information
Flow Control,” thèse de doct., Stanford University, 2008. adresse : https:
//dl.acm.org/doi/10.5555/1369312 (cité page 6).

[2] Jacob Zimmermann, Ludovic Mé, Christophe Bidan, “Introducing Refe-
rence Flow Control for Detecting Intrusion Symptoms at the OS Level,”
in Recent Advances in Intrusion Detection, A. Wespi , G. Vigna et L.
Deri , éd., Berlin, Heidelberg : Springer Berlin Heidelberg, oct. 2002,
p. 292-306, isbn : 978-3-540-36084-1 (cité page 6).

[3] Cheng Wang, Shiliang Hu, Ho-seop Kim, “StarDBT : An Efficient Multi-
platform Dynamic Binary Translation System,” in Advances in Computer
Systems Architecture, L. Choi , Y. Paek et S. Cho , éd., Berlin, Heidel-
berg : Springer Berlin Heidelberg, 2007, p. 4-15, isbn : 978-3-540-74309-5
(cité page 7).

[4] Chi-Keung Luk, Robert Cohn, Robert Muth, “Pin : building customized
program analysis tools with dynamic instrumentation,” SIGPLAN Not.,
t. 40, no 6, p. 190-200, juin 2005, issn : 0362-1340. doi : 10.1145/
1064978.1065034. adresse : https://doi.org/10.1145/1064978.
1065034 (cité page 7).

[5] Michael Dalton, Hari Kannan, Christos Kozyrakis, “Raksha : a flexible
information flow architecture for software security,” SIGARCH Comput.
Archit. News, t. 35, no 2, p. 482-493, juin 2007, issn : 0163-5964. doi :
10.1145/1273440.1250722. adresse : https://doi.org/10.1145/
1273440.1250722 (cité pages 7-9).

[6] André DeHon, Ben Karel, Thomas F. Knight, “Preliminary design of the
SAFE platform,” in Proceedings of the 6th Workshop on Programming
Languages and Operating Systems, sér. PLOS ’11, Cascais, Portugal :
Association for Computing Machinery, oct. 2011, isbn : 9781450309790.
doi : 10.1145/2039239.2039245. adresse : https://doi.org/10.1145/
2039239.2039245 (cité page 7).

[7] Hari Kannan, Michael Dalton, Christos Kozyrakis, “Decoupling Dyna-
mic Information Flow Tracking with a dedicated coprocessor,” in 2009
IEEE/IFIP International Conference on Dependable Systems & Net-
works, juin 2009, p. 105-114. doi : 10.1109/DSN.2009.5270347 (cité
pages 7-9, 15).

https://dl.acm.org/doi/10.5555/1369312
https://dl.acm.org/doi/10.5555/1369312
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1273440.1250722
https://doi.org/10.1145/1273440.1250722
https://doi.org/10.1145/1273440.1250722
https://doi.org/10.1145/2039239.2039245
https://doi.org/10.1145/2039239.2039245
https://doi.org/10.1145/2039239.2039245
https://doi.org/10.1109/DSN.2009.5270347

76 Bibliographie

[8] Ingoo Heo, Minsu Kim, Yongje Lee, “Implementing an Application-
Specific Instruction-Set Processor for System-Level Dynamic Program
Analysis Engines,” ACM Trans. Des. Autom. Electron. Syst., t. 20, no 4,
sept. 2015, issn : 1084-4309. doi : 10.1145/2746238. adresse : https:
//doi.org/10.1145/2746238 (cité pages 9, 14, 15).

[9] Daniel Y. Deng, Daniel Lo, Greg Malysa, Skyler Schneider, G. Edward
Suh, “Flexible and Efficient Instruction-Grained Run-Time Monitoring
Using On-Chip Reconfigurable Fabric,” in 2010 43rd Annual IEEE/ACM
International Symposium on Microarchitecture, déc. 2010, p. 137-148.
doi : 10.1109/MICRO.2010.17 (cité pages 9, 15).

[10] Daniel Y. Deng, G. Edward Suh, “High-performance parallel accelerator
for flexible and efficient run-time monitoring,” in IEEE/IFIP Internatio-
nal Conference on Dependable Systems and Networks (DSN 2012), juin
2012, p. 1-12. doi : 10.1109/DSN.2012.6263925 (cité page 9).

[11] Jinyong Lee, Ingoo Heo, Yongje Lee, Yunheung Paek, “Efficient Security
Monitoring with the Core Debug Interface in an Embedded Processor,”
ACM Trans. Des. Autom. Electron. Syst., t. 22, no 1, mai 2016, issn :
1084-4309. doi : 10.1145/2907611. adresse : https://doi.org/10.
1145/2907611 (cité page 9).

[12] Udit Dhawan, Catalin Hritcu, Raphael Rubin, “Architectural Support
for Software-Defined Metadata Processing,” SIGARCH Comput. Archit.
News, t. 43, no 1, p. 487-502, mars 2015, issn : 0163-5964. doi : 10.1145/
2786763.2694383. adresse : https://doi.org/10.1145/2786763.
2694383 (cité page 9).

[13] Olatunji Ruwase, Phillip B. Gibbons, Todd C. Mowry, “Parallelizing dy-
namic information flow tracking,” in Proceedings of the Twentieth Annual
Symposium on Parallelism in Algorithms and Architectures, sér. SPAA
’08, Munich, Germany : Association for Computing Machinery, juin 2008,
p. 35-45, isbn : 9781595939739. doi : 10 . 1145 / 1378533 . 1378538.
adresse : https://doi.org/10.1145/1378533.1378538 (cité page 9).

[14] Shimin Chen, Michael Kozuch, Theodoros Strigkos, “Flexible Hardware
Acceleration for Instruction-Grain Program Monitoring,” SIGARCH
Comput. Archit. News, t. 36, no 3, p. 377-388, juin 2008, issn : 0163-
5964. doi : 10.1145/1394608.1382153. adresse : https://doi.org/
10.1145/1394608.1382153 (cité page 9).

[15] Lucas Davi, Matthias Hanreich, Debayan Paul, “HAFIX : hardware-
assisted flow integrity extension,” in Proceedings of the 52nd Annual De-
sign Automation Conference, sér. DAC ’15, San Francisco, California :
Association for Computing Machinery, juin 2015, isbn : 9781450335201.

https://doi.org/10.1145/2746238
https://doi.org/10.1145/2746238
https://doi.org/10.1145/2746238
https://doi.org/10.1109/MICRO.2010.17
https://doi.org/10.1109/DSN.2012.6263925
https://doi.org/10.1145/2907611
https://doi.org/10.1145/2907611
https://doi.org/10.1145/2907611
https://doi.org/10.1145/2786763.2694383
https://doi.org/10.1145/2786763.2694383
https://doi.org/10.1145/2786763.2694383
https://doi.org/10.1145/2786763.2694383
https://doi.org/10.1145/1378533.1378538
https://doi.org/10.1145/1378533.1378538
https://doi.org/10.1145/1394608.1382153
https://doi.org/10.1145/1394608.1382153
https://doi.org/10.1145/1394608.1382153

Bibliographie 77

doi : 10.1145/2744769.2744847. adresse : https://doi.org/10.1145/
2744769.2744847 (cité page 9).

[16] Olle Svanfeldt-Winter, Sebastien Lafond, Johan Lilius, Evaluation of the
Energy Efficiency of ARM Based Processors for Cloud Infrastructure,
Odefinierat/okänt. Turku Centre for Computer Science (TUCS), 2010,
TUCS Technical Report No 991, December 2010, isbn : 978-952-12-2516-
1 (cité page 14).

[17] Jim Smith, Ravi Nair, Virtual machines : versatile platforms for systems
and processes. Elsevier, 2005 (cité page 15).

[18] Taemin Park, Karel Dhondt, David Gens, Yeoul Na, Stijn Volckaert, Mi-
chael Franz, “NoJITsu : locking down JavaScript engines,” in Proceedings
of the 27th Network and Distributed System Security Symposium (ND-
SS’20), San Diego, California, USA : The Internet Society, fév. 2020.
doi : 10.14722/ndss.2020.24262 (cité pages 16, 17).

[19] Aleph One, “Smashing the stack for fun and profit,” Phrack magazine,
t. 7, no 49, 1996. adresse : http://phrack.org/issues/49/14.html
(cité page 16).

[20] Hovav Shacham, “The geometry of innocent flesh on the bone : return-
into-libc without function calls (on the x86),” in Proceedings of the 14th
ACM SIGSAC Conference on Computer and Communications Security
(CCS’07), Alexandria, Virginia, USA : ACM, oct. 2007, p. 552-561. doi :
10.1145/1315245.1315313 (cité page 16).

[21] Hong Hu, Shweta Shinde, Sendroiu Adrian, Zheng Leong Chua, Prateek
Saxena, Zhenkai Liang, “Data-oriented programming : on the expressive-
ness of non-control data attacks,” in Proceedings of the 37th IEEE Sym-
posium on Security and Privacy (S&P’16), San Jose, California, USA :
IEEE, août 2016, p. 969-986. doi : 10.1109/sp.2016.62 (cité page 17).

[22] Dionysus Blazakis, “Interpreter Exploitation,” in Proceedings of the 4th
USENIX Workshop on Offensive Technologies (WOOT’10), Washington
DC, USA : USENIX Association, août 2010. adresse : https://dl.acm.
org/doi/10.5555/1925004.1925011 (cité page 17).

[23] Kevin Z Snow, Fabian Monrose, Lucas Davi, Alexandra Dmitrienko,
Christopher Liebchen, Ahmad-Reza Sadeghi, “Just-in-time code reuse :
on the effectiveness of fine-grained address space layout randomiza-
tion,” in Proceedings of the IEEE Symposium on Security and Privacy
(S&P’13), Berkeley, California, USA : IEEE, mai 2013, p. 574-588. doi :
10.1109/SP.2013.45 (cité page 17).

https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.1145/2744769.2744847
https://doi.org/10.14722/ndss.2020.24262
http://phrack.org/issues/49/14.html
https://doi.org/10.1145/1315245.1315313
https://doi.org/10.1109/sp.2016.62
https://dl.acm.org/doi/10.5555/1925004.1925011
https://dl.acm.org/doi/10.5555/1925004.1925011
https://doi.org/10.1109/SP.2013.45

78 Bibliographie

[24] Wilson Lian, Hovav Shacham, Stefan Savage, “A call to ARMs : unders-
tanding the costs and benefits of JIT spraying mitigations,” in Procee-
dings of the 24th Network and Distributed System Security Symposium
(NDSS’17), San Diego, California, USA : The Internet Society, fév. 2017.
doi : 10.14722/ndss.2017.23108 (cité page 17).

[25] Team PaX, “PaX team objectives,” 2003. adresse : http : / / pax .
grsecurity.net/docs/pax.txt (cité page 17).

[26] Team PaX, “PaX Non-Executable pages design (NOEXEC),” 2003.
adresse : http://pax.grsecurity.net/docs/aslr.txt (cité page 17).

[27] Martı́n Abadi, Mihai Budiu, Ulfar Erlingsson, Jay Ligatti, “Control-flow
integrity principles, implementations, and applications,” TISSEC : ACM
Transactions on Information and System Security, t. 13, no 1, p. 1-40,
nov. 2009. doi : 10.1145/1609956.1609960 (cité page 17).

[28] ARM, Learn the architecture - TrustZone for AArch64, Version 1.1, 2021.
adresse : https://developer.arm.com/documentation/102418/0101/
(cité page 17).

[29] Victor Costan, Srinivas Devadas, “Intel SGX explained,” Cryptology
ePrint Archive (IACR), jan. 2016. adresse : https://eprint.iacr.
org/2016/086 (cité page 17).

[30] Dayeol Lee, David Kohlbrenner, Shweta Shinde, Krste Asanovic, Dawn
Song, “Keystone : An Open Framework for Architecting Trusted Execu-
tion Environments,” in Proceedings of the Fifteenth European Conference
on Computer Systems, sér. EuroSys ’20, avr. 2020 (cité pages 17, 53, 54).

[31] Soyeon Park, Sangho Lee, Wen Xu, Hyungon Moon, Taesoo Kim,
“libmpk : software abstraction for Intel Memory Protection Keys (In-
tel MPK),” in Proceedings of the USENIX Annual Technical Conference
(ATC’19), Renton, Washington, USA : USENIX Association, juill. 2019,
p. 241-254. adresse : https://www.usenix.org/conference/atc19/
presentation/park-soyeon (cité page 17).

[32] Guillermo Polito, Pablo Tesone, Stéphane Ducasse, “Cross-ISA testing
of the Pharo VM : lessons learned while porting to ARMv8,” in Procee-
dings of the 18th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR’21), ACM, sept. 2021,
p. 16-25. doi : 10.1145/3475738.3480715 (cité page 17).

[33] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, “Gigue : A JIT Code
Binary Generator for Hardware Testing,” in 2023 Workshop on Virtual
Machines and Language Implementations, oct. 2023 (cité pages 18, 68).

https://doi.org/10.14722/ndss.2017.23108
http://pax.grsecurity.net/docs/pax.txt
http://pax.grsecurity.net/docs/pax.txt
http://pax.grsecurity.net/docs/aslr.txt
https://doi.org/10.1145/1609956.1609960
https://developer.arm.com/documentation/102418/0101/
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://www.usenix.org/conference/atc19/presentation/park-soyeon
https://doi.org/10.1145/3475738.3480715

Bibliographie 79

[34] Haeyoung Kim, Jinjae Lee, Derry Pratama, Asep Muhamad Awaludin,
Howon Kim, Donghyun Kwon, “RIMI : instruction-level memory isolation
for embedded systems on RISC-V,” in Proceedings of the 39th Internatio-
nal Conference on Computer-Aided Design (ICCAD’20), San Diego, Ca-
lifornia, USA : ACM, nov. 2020, p. 1-9. doi : 10.1145/3400302.3415727
(cité page 21).

[35] Haeyoung Kim, Harashta Tatimma Larasati, Jonguk Park, Howon Kim,
Donghyun Kwon, “DEMIX : Domain-Enforced Memory Isolation for Em-
bedded System,” Sensors, t. 23, no 7, p. 3568, mars 2023. doi : 10.3390/
s23073568 (cité page 21).

[36] Yu Wang, Jinting Wu, Haodong Zheng, Zhenyu Ning, Boyuan He, Feng-
wei Zhang, “Raft : Hardware-assisted Dynamic Information Flow Tra-
cking for Runtime Protection on RISC-V,” in Proceedings of the 26th
International Symposium on Research in Attacks, Intrusions and De-
fenses, sér. RAID ’23, Hong Kong, China : Association for Computing
Machinery, oct. 2023, p. 595-608, isbn : 9798400707650. doi : 10.1145/
3607199.3607246. adresse : https://doi.org/10.1145/3607199.
3607246 (cité page 25).

[37] William Pensec, “Enhanced Processor Defence Against Physical and Soft-
ware Threats by Securing DIFT Against Fault Injection Attacks,” Theses,
Université Bretagne sud, déc. 2024. adresse : https://hal.science/
tel-04862037 (cité page 25).

[38] RISC-V International / riscv-non-isa, RISC-V Processor Trace Speci-
fication, https://github.com/riscv-non-isa/riscv-trace-spec,
GitHub repository, latest release version 2.0 (tag : 2.0-20250616), relea-
sed June 23, 2025, juin 2025 (cité page 26).

[39] Quentin Ducasse, Pascal Cotret, Loı̈c Lagadec, “JITDomain :
Instruction-Level JIT Code Isolation,” Microprocessors and Microsys-
tems, Elsevier , éd., août 2025, article en révision mineure (cité pages 26,
68).

[40] Vikas Hassija, Vinay Chamola, Vikas Saxena, Divyansh Jain, Pranav
Goyal, Biplab Sikdar, “A Survey on IoT Security : Application Areas, Se-
curity Threats, and Solution Architectures,” IEEE Access, t. 7, p. 82 721-
82 743, juin 2019. doi : 10.1109/ACCESS.2019.2924045 (cité page 27).

[41] Daniele Sgandurra, Emil Lupu, “Evolution of Attacks, Threat Models,
and Solutions for Virtualized Systems,” ACM Comput. Surv., t. 48, no 3,
fév. 2016, issn : 0360-0300. doi : 10.1145/2856126. adresse : https:
//doi.org/10.1145/2856126 (cité page 28).

https://doi.org/10.1145/3400302.3415727
https://doi.org/10.3390/s23073568
https://doi.org/10.3390/s23073568
https://doi.org/10.1145/3607199.3607246
https://doi.org/10.1145/3607199.3607246
https://doi.org/10.1145/3607199.3607246
https://doi.org/10.1145/3607199.3607246
https://hal.science/tel-04862037
https://hal.science/tel-04862037
https://github.com/riscv-non-isa/riscv-trace-spec
https://doi.org/10.1109/ACCESS.2019.2924045
https://doi.org/10.1145/2856126
https://doi.org/10.1145/2856126
https://doi.org/10.1145/2856126

80 Bibliographie

[42] Tianxu Li, Mohamed El-Bouazzati, Camille Monière, Philippe Tanguy,
Guy Gogniat, “Comparison Between In-Core Hardware IDS, Off-Core
Hardware IDS and Software IDS,” in Design and Architecture for Signal
and Image Processing, J. Lorandel et A. Kamaleldin , éd., Cham :
Springer Nature Switzerland, avr. 2025, p. 108-120, isbn : 978-3-031-
87897-8 (cité page 28).

[43] Rieul Ducousso, “Securing access to and from peripherals in a multicore
RISC-V architecture used for virtualization,” thèse de doct., Sorbonne
University, mars 2023 (cité page 30).

[44] Thore Tiemann, Zane Weissman, Thomas Eisenbarth, Berk Sunar,
“IOTLB-SC : An Accelerator-Independent Leakage Source in Modern
Cloud Systems,” in Proceedings of the ACM Asia Conference on Compu-
ter and Communications Security, sér. ASIA CCS ’23, ACM, juill. 2023.
doi : 10.1145/3579856.3582838. adresse : http://dx.doi.org/10.
1145/3579856.3582838 (cité page 30).

[45] Ahmad Atamli, Giuseppe Petracca, Jon Crowcroft, “IO-Trust : An out-
of-band trusted memory acquisition for intrusion detection and Forensics
investigations in cloud IOMMU based systems,” in Proceedings of the 14th
International Conference on Availability, Reliability and Security, New
York, NY, USA : Association for Computing Machinery, août 2019, isbn :
9781450371643. doi : 10.1145/3339252.3340511. adresse : https:
//doi.org/10.1145/3339252.3340511 (cité page 31).

[46] Christoph Peglow, “Security analysis of hybrid Intel CPU/FPGA plat-
forms using IOMMUs against I/O attacks,” Master’s Thesis, University
of Lübeck, Lübeck, Germany, juill. 2020 (cité page 31).

[47] Emre Karabulut, Amro Awad, Aydin Aysu, “SS-AXI : Secure and Safe Ac-
cess Control Mechanism for Multi-Tenant Cloud FPGAs,” in 2023 IEEE
International Symposium on Circuits and Systems (ISCAS), mai 2023,
p. 1-5. doi : 10.1109/ISCAS46773.2023.10181609 (cité page 31).

[48] Joel Mandebi Mbongue, Sujan Kumar Saha, Christophe Bobda, “A Secu-
rity Architecture for Domain Isolation in Multi-Tenant Cloud FPGAs,”
in 2021 IEEE Computer Society Annual Symposium on VLSI (ISVLSI),
juill. 2021, p. 290-295. doi : 10.1109/ISVLSI51109.2021.00060 (cité
page 31).

[49] Rana Elnaggar, Ramesh Karri, Krishnendu Chakrabarty, “Multi-Tenant
FPGA-based Reconfigurable Systems : Attacks and Defenses,” in 2019
Design, Automation & Test in Europe Conference & Exhibition (DATE),
mars 2019, p. 7-12. doi : 10.23919/DATE.2019.8714904 (cité page 31).

https://doi.org/10.1145/3579856.3582838
http://dx.doi.org/10.1145/3579856.3582838
http://dx.doi.org/10.1145/3579856.3582838
https://doi.org/10.1145/3339252.3340511
https://doi.org/10.1145/3339252.3340511
https://doi.org/10.1145/3339252.3340511
https://doi.org/10.1109/ISCAS46773.2023.10181609
https://doi.org/10.1109/ISVLSI51109.2021.00060
https://doi.org/10.23919/DATE.2019.8714904

Bibliographie 81

[50] Benoît Morgan, Eric Alata, Vincent Nicomette, Mohamed Kaaniche,
“IOMMU protection against I/O attacks : A vulnerability and a proof-
of-concept,” Journal of the Brazilian Computer Society, t. 24, déc. 2018.
doi : 10.1186/s13173-017-0066-7 (cité page 31).

[51] Lilian Bossuet, El Mehdi Benhani, “Security Assessment of Heteroge-
neous SoC-FPGA : On the Practicality of Cache Timing Attacks,” in
2021 IFIP/IEEE 29th International Conference on Very Large Scale In-
tegration (VLSI-SoC), oct. 2021, p. 1-6. doi : 10.1109/VLSI-SoC53125.
2021.9607012 (cité page 31).

[52] El Mehdi Benhani, Cedric Marchand, Alain Aubert, Lilian Bossuet, “On
the security evaluation of the ARM TrustZone extension in a heteroge-
neous SoC,” in 2017 30th IEEE International System-on-Chip Conference
(SOCC), sept. 2017, p. 108-113. doi : 10.1109/SOCC.2017.8226018 (cité
page 31).

[53] José Martins, Adriano Tavares, Marco Solieri, Marko Bertogna, San-
dro Pinto, “Bao : A Lightweight Static Partitioning Hypervisor for Mo-
dern Multi-Core Embedded Systems,” in Workshop on Next Generation
Real-Time Embedded Systems (NG-RES 2020), M. Bertogna et F.
Terraneo , éd., sér. Open Access Series in Informatics (OASIcs), t. 77,
Dagstuhl, Germany : Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
jan. 2020, 3 :1-3 :14, isbn : 978-3-95977-136-8. doi : 10.4230/OASIcs.
NG-RES.2020.3. adresse : https://drops.dagstuhl.de/entities/
document/10.4230/OASIcs.NG-RES.2020.3 (cité page 34).

[54] Bruno Sá, Francisco Marques, Manuel Rodriguez, José Martins, Sandro
Pinto, “Holistic RISC-V Virtualization : CVA6-based SoC,” in Procee-
dings of the 20th ACM International Conference on Computing Fron-
tiers, sér. CF ’23, Bologna, Italy : Association for Computing Machinery,
août 2023, p. 389-390, isbn : 9798400701405. doi : 10.1145/3587135.
3591436. adresse : https://doi.org/10.1145/3587135.3591436 (cité
page 34).

[55] Yoann Bourgin. “L’allemand ARX Robotics lève 31 millions d’euros pour
ses véhicules militaires autonomes.” Consulté le 9 mai 2025. (2025),
adresse : https : / / archive . ph / rzp8H (visité le 09/05/2025) (cité
page 36).

[56] Naval Group. “Naval Group va réaliser un démonstrateur de drone sous-
marin autonome pour la Direction Générale de l’Armement (DGA).”
Consulté le 9 mai 2025. (jan. 2024), adresse : https://archive.ph/
102AM (visité le 09/05/2025) (cité page 36).

https://doi.org/10.1186/s13173-017-0066-7
https://doi.org/10.1109/VLSI-SoC53125.2021.9607012
https://doi.org/10.1109/VLSI-SoC53125.2021.9607012
https://doi.org/10.1109/SOCC.2017.8226018
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.4230/OASIcs.NG-RES.2020.3
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.NG-RES.2020.3
https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.NG-RES.2020.3
https://doi.org/10.1145/3587135.3591436
https://doi.org/10.1145/3587135.3591436
https://doi.org/10.1145/3587135.3591436
https://archive.ph/rzp8H
https://archive.ph/102AM
https://archive.ph/102AM

82 Bibliographie

[57] Les Échos. “Thales livre à la Marine le premier système autonome de
lutte contre les mines.” Consulté le 9 mai 2025. (2025), adresse : https:
//archive.ph/h7V6g (visité le 09/05/2025) (cité page 36).

[58] Mohamed Amine Ferrag, Leandros Maglaras, Helge Janicke, Richard
Smith, “Deep Learning Techniques for Cyber Security Intrusion Detec-
tion : A Detailed Analysis,” in 6th International Symposium for ICS &
SCADA Cyber Security Research 2019, sept. 2019. doi : 10.14236/ewic/
icscsr19.16 (cité page 36).

[59] Mohamed El Bouazzati, Russell Tessier, Philippe Tanguy, Guy Gogniat,
“A Lightweight Intrusion Detection System against IoT Memory Cor-
ruption Attacks,” in 2023 26th International Symposium on Design and
Diagnostics of Electronic Circuits and Systems (DDECS), Tallinn, Esto-
nia : IEEE, 3 mai 2023, p. 118-123. doi : 10.1109/DDECS57882.2023.
10139718 (cité page 36).

[60] Nabila Farnaaz, M.A. Jabbar, “Random Forest Modeling for Network
Intrusion Detection System,” Procedia Computer Science, t. 89, p. 213-
217, 2016, issn : 1877-0509. doi : https://doi.org/10.1016/j.procs.
2016.06.047. adresse : https://www.sciencedirect.com/science/
article/pii/S1877050916311127 (cité page 36).

[61] Gaurav Choudhary, Vishal Sharma, Ilsun You, Kangbin Yim, Ing-Ray
Chen, Jin-Hee Cho, “Intrusion Detection Systems for Networked Un-
manned Aerial Vehicles : A Survey,” in 2018 14th International Wireless
Communications & Mobile Computing Conference (IWCMC), juin 2018,
p. 560-565. doi : 10.1109/IWCMC.2018.8450305 (cité page 37).

[62] Said Ouiazzane, Fatimazahra Barramou, Malika Addou, “Towards a
Multi-Agent Based Network Intrusion Detection System for a Fleet of
Drones,” International Journal of Advanced Computer Science and Ap-
plications, t. 11, no 10, 2020. doi : 10.14569/IJACSA.2020.0111044
(cité page 37).

[63] Nikola Kovacevic, Dorde Miseljic, Aleksa Stojkovic, “RISC-V vector pro-
cessor for acceleration of machine learning algorithms,” in 2022 30th Te-
lecommunications Forum (TELFOR), nov. 2022, p. 1-4. doi : 10.1109/
TELFOR56187.2022.9983779 (cité page 37).

[64] Ning Wu, Tao Jiang, Lei Zhang, Fang Zhou, Fen Ge, “A Reconfigurable
Convolutional Neural Network-Accelerated Coprocessor Based on RISC-
V Instruction Set,” Electronics, t. 9, no 6, juin 2020, issn : 2079-9292.
adresse : https://www.mdpi.com/2079-9292/9/6/1005 (cité page 37).

https://archive.ph/h7V6g
https://archive.ph/h7V6g
https://doi.org/10.14236/ewic/icscsr19.16
https://doi.org/10.14236/ewic/icscsr19.16
https://doi.org/10.1109/DDECS57882.2023.10139718
https://doi.org/10.1109/DDECS57882.2023.10139718
https://doi.org/https://doi.org/10.1016/j.procs.2016.06.047
https://doi.org/https://doi.org/10.1016/j.procs.2016.06.047
https://www.sciencedirect.com/science/article/pii/S1877050916311127
https://www.sciencedirect.com/science/article/pii/S1877050916311127
https://doi.org/10.1109/IWCMC.2018.8450305
https://doi.org/10.14569/IJACSA.2020.0111044
https://doi.org/10.1109/TELFOR56187.2022.9983779
https://doi.org/10.1109/TELFOR56187.2022.9983779
https://www.mdpi.com/2079-9292/9/6/1005

Bibliographie 83

[65] Mohammadhossein Askarihemmat, Sean Wagner, Olexa Bilaniuk, Yas-
sine Hariri, Yvon Savaria, Jean-Pierre David, “BARVINN : Arbitrary
Precision DNN Accelerator Controlled by a RISC-V CPU,” in Procee-
dings of the 28th Asia and South Pacific Design Automation Conference,
sér. ASPDAC ’23, Tokyo, Japan : Association for Computing Machinery,
jan. 2023, p. 483-489, isbn : 9781450397834. doi : 10.1145/3566097.
3567872. adresse : https://doi.org/10.1145/3566097.3567872 (cité
page 38).

[66] Alejandra Sanchez-Flores, Lluc Alvarez, Bartomeu Alorda-Ladaria, “A
review of CNN accelerators for embedded systems based on RISC-V,” in
2022 IEEE International Conference on Omni-layer Intelligent Systems
(COINS), août 2022, p. 1-6. doi : 10.1109/COINS54846.2022.9855006
(cité page 38).

[67] Sathwika Bavikadi, Purab Ranjan Sutradhar, Amlan Ganguly, Sai Manoj
Pudukotai Dinakarrao, “Reconfigurable Processing-in-Memory Architec-
ture for Data Intensive Applications,” in 2024 37th International Confe-
rence on VLSI Design and 2024 23rd International Conference on Embed-
ded Systems (VLSID), jan. 2024, p. 222-227. doi : 10.1109/VLSID60093.
2024.00043 (cité page 38).

[68] Bo Zhang, Shihui Yin, Minkyu Kim, “PIMCA : A Programmable In-
Memory Computing Accelerator for Energy-Efficient DNN Inference,”
IEEE Journal of Solid-State Circuits, t. 58, no 5, p. 1436-1449, mai 2023.
doi : 10.1109/JSSC.2022.3211290 (cité page 38).

[69] Yujeong Choi, Minsoo Rhu, “PREMA : A Predictive Multi-Task Schedu-
ling Algorithm For Preemptible Neural Processing Units,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), fév. 2020, p. 220-233. doi : 10.1109/HPCA47549.2020.00027
(cité page 38).

[70] Jinwoo Choi, Yeonan Ha, Jounghoo Lee, “Enabling Fine-Grained Spatial
Multitasking on Systolic-Array NPUs Using Dataflow Mirroring,” IEEE
Transactions on Computers, t. 72, no 12, p. 3383-3398, déc. 2023. doi :
10.1109/TC.2023.3299030 (cité page 38).

[71] Melisande Zonta-Roudes, Andres Meza, Nora Hinderling, “eXpect : On
the Security Implications of Violations in AXI Implementations,” in Pro-
ceedings of the 43rd IEEE/ACM International Conference on Computer-
Aided Design, sér. ICCAD ’24, Newark Liberty International Airport
Marriott, New York, NY, USA : Association for Computing Machinery,
avr. 2025, isbn : 9798400710773. doi : 10.1145/3676536.3676844 (cité
pages 39, 59).

https://doi.org/10.1145/3566097.3567872
https://doi.org/10.1145/3566097.3567872
https://doi.org/10.1145/3566097.3567872
https://doi.org/10.1109/COINS54846.2022.9855006
https://doi.org/10.1109/VLSID60093.2024.00043
https://doi.org/10.1109/VLSID60093.2024.00043
https://doi.org/10.1109/JSSC.2022.3211290
https://doi.org/10.1109/HPCA47549.2020.00027
https://doi.org/10.1109/TC.2023.3299030
https://doi.org/10.1145/3676536.3676844

84 Bibliographie

[72] Melisande Zonta, Nora Hinderling, Shweta Shinde, “Xray : Detecting and
Exploiting Vulnerabilities in Arm AXI Interconnects,” in 2025 Design,
Automation & Test in Europe Conference (DATE), avr. 2025, p. 1-7.
doi : 10.23919/DATE64628.2025.10992968 (cité page 39).

[73] Pasquale Davide Schiavone, Davide Rossi, Antonio Pullini, Alfio Di
Mauro, Francesco Conti, Luca Benini, “Quentin : an Ultra-Low-Power
PULPissimo SoC in 22nm FDX,” in 2018 IEEE SOI-3D-Subthreshold
Microelectronics Technology Unified Conference (S3S), oct. 2018, p. 1-3.
doi : 10.1109/S3S.2018.8640145 (cité page 40).

[74] Francesco Conti, Pasquale Davide Schiavone, Luca Benini, “XNOR Neu-
ral Engine : A Hardware Accelerator IP for 21.6-fJ/op Binary Neural
Network Inference,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, juill. 2018, issn : 0278-0070. doi : 10.
1109/TCAD.2018.2857019 (cité page 40).

[75] Jiliang Zhang, Congcong Chen, Jinhua Cui, Keqin Li, “Timing Side-
channel Attacks and Countermeasures in CPU Microarchitectures,” ACM
Comput. Surv., t. 56, no 7, avr. 2024, issn : 0360-0300. doi : 10.1145/
3645109. adresse : https://doi.org/10.1145/3645109 (cité page 43).

[76] Maria Mushtaq, Muhammad Asim Mukhtar, Vianney Lapotre, Muham-
mad Khurram Bhatti, Guy Gogniat, “Winter is here ! A decade of cache-
based side-channel attacks, detection & mitigation for RSA,” Informa-
tion Systems, t. 92, p. 101 524, sept. 2020, issn : 0306-4379. doi : https:
//doi.org/10.1016/j.is.2020.101524 (cité page 43).

[77] Yuval Yarom, Katrina Falkner, “FLUSH+RELOAD : A High Reso-
lution, Low Noise, L3 Cache Side-Channel Attack,” in 23rd USENIX
Security Symposium (USENIX Security 14), San Diego, CA : USE-
NIX Association, août 2014, p. 719-732. adresse : https : / / www .
usenix.org/conference/usenixsecurity14/technical-sessions/
presentation/yarom (cité page 43).

[78] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, Ruby B. Lee, “Last-
Level Cache Side-Channel Attacks are Practical,” in 2015 IEEE Sympo-
sium on Security and Privacy, mai 2015, p. 605-622. doi : 10.1109/SP.
2015.43 (cité page 43).

[79] Colin Percival, “Cache missing for fun and profit,” 2005 (cité page 43).
[80] Dag Arne Osvik, Adi Shamir, Eran Tromer, “Cache Attacks and Coun-

termeasures : The Case of AES,” in Topics in Cryptology – CT-RSA 2006,
D. Pointcheval , éd., Berlin, Heidelberg : Springer Berlin Heidelberg,
fév. 2006, p. 1-20, isbn : 978-3-540-32648-9 (cité pages 43, 55).

https://doi.org/10.23919/DATE64628.2025.10992968
https://doi.org/10.1109/S3S.2018.8640145
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1109/TCAD.2018.2857019
https://doi.org/10.1145/3645109
https://doi.org/10.1145/3645109
https://doi.org/10.1145/3645109
https://doi.org/https://doi.org/10.1016/j.is.2020.101524
https://doi.org/https://doi.org/10.1016/j.is.2020.101524
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://doi.org/10.1109/SP.2015.43
https://doi.org/10.1109/SP.2015.43

Bibliographie 85

[81] Eran Tromer, Dag Arne Osvik, Adi Shamir, “Efficient Cache Attacks on
AES, and Countermeasures,” Journal of Cryptology, t. 23, no 1, p. 37-71,
2010. doi : 10.1007/s00145-009-9049-y. adresse : https://link.
springer.com/article/10.1007/s00145-009-9049-y (cité page 43).

[82] Antoon Purnal, Lukas Giner, Daniel Gruss, Ingrid Verbauwhede, “Syste-
matic Analysis of Randomization-based Protected Cache Architectures,”
in 2021 IEEE Symposium on Security and Privacy (SP), mai 2021, p. 987-
1002. doi : 10.1109/SP40001.2021.00011 (cité page 43).

[83] Meng Wu, Shengjian Guo, Patrick Schaumont, Chao Wang, “Eliminating
timing side-channel leaks using program repair,” in Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, sér. ISSTA 2018, Amsterdam, Netherlands : Association for
Computing Machinery, juill. 2018, p. 15-26, isbn : 9781450356992. doi :
10.1145/3213846.3213851. adresse : https://doi.org/10.1145/
3213846.3213851 (cité page 44).

[84] Zhenghong Wang, Ruby B. Lee, “New cache designs for thwarting soft-
ware cache-based side channel attacks,” SIGARCH Comput. Archit.
News, t. 35, no 2, p. 494-505, juin 2007, issn : 0163-5964. doi : 10.1145/
1273440.1250723. adresse : https://doi.org/10.1145/1273440.
1250723 (cité pages 44, 45, 49, 50, 55).

[85] Moinuddin K. Qureshi, “CEASER : Mitigating Conflict-Based Cache
Attacks via Encrypted-Address and Remapping,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
oct. 2018, p. 775-787. doi : 10.1109/MICRO.2018.00068 (cité pages 44,
49, 50).

[86] Moinuddin K. Qureshi, “New attacks and defense for encrypted-address
cache,” in Proceedings of the 46th International Symposium on Compu-
ter Architecture, sér. ISCA ’19, Phoenix, Arizona : Association for Com-
puting Machinery, juin 2019, p. 360-371, isbn : 9781450366694. doi :
10.1145/3307650.3322246. adresse : https://doi.org/10.1145/
3307650.3322246 (cité page 44).

[87] Mario Werner, Thomas Unterluggauer, Lukas Giner, Michael Schwarz,
Daniel Gruss, Stefan Mangard, “ScatterCache : Thwarting Cache Attacks
via Cache Set Randomization,” in 28th USENIX Security Symposium
(USENIX Security 19), Santa Clara, CA : USENIX Association, août
2019, p. 675-692. adresse : https://www.usenix.org/conference/
usenixsecurity19/presentation/werner (cité page 44).

https://doi.org/10.1007/s00145-009-9049-y
https://link.springer.com/article/10.1007/s00145-009-9049-y
https://link.springer.com/article/10.1007/s00145-009-9049-y
https://doi.org/10.1109/SP40001.2021.00011
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/3213846.3213851
https://doi.org/10.1145/1273440.1250723
https://doi.org/10.1145/1273440.1250723
https://doi.org/10.1145/1273440.1250723
https://doi.org/10.1145/1273440.1250723
https://doi.org/10.1109/MICRO.2018.00068
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1145/3307650.3322246
https://doi.org/10.1145/3307650.3322246
https://www.usenix.org/conference/usenixsecurity19/presentation/werner
https://www.usenix.org/conference/usenixsecurity19/presentation/werner

86 Bibliographie

[88] Nils Wistoff, Gernot Heiser, Luca Benini, fence.t.s : Closing Ti-
ming Channels in High-Performance Out-of-Order Cores through ISA-
Supported Temporal Partitioning, sept. 2024. arXiv : 2409 . 07576
[cs.CR]. adresse : https://arxiv.org/abs/2409.07576 (cité page 44).

[89] Mathieu Escouteloup, Ronan Lashermes, Jacques Fournier, Jean-Louis
Lanet, “Under the Dome : Preventing Hardware Timing Information
Leakage,” in Smart Card Research and Advanced Applications, V.
Grosso et T. Pöppelmann , éd., Cham : Springer International Pu-
blishing, mars 2022, p. 233-253, isbn : 978-3-030-97348-3 (cité page 44).

[90] Leonid Domnitser, Aamer Jaleel, Jason Loew, Nael Abu-Ghazaleh, Dmi-
try Ponomarev, “Non-monopolizable caches : Low-complexity mitigation
of cache side channel attacks,” ACM Trans. Archit. Code Optim., t. 8,
no 4, jan. 2012, issn : 1544-3566. doi : 10.1145/2086696.2086714.
adresse : https://doi.org/10.1145/2086696.2086714 (cité pages 44,
49, 50).

[91] Jean-Loup Hatchikian-Houdot, Pierre Wilke, Frédéric Besson, Guillaume
Hiet, “Formal Hardware/Software Models for Cache Locking Enabling
Fast and Secure Code,” in Computer Security – ESORICS 2024, J.
Garcia-Alfaro , R. Kozik , M. Choraś et S. Katsikas , éd., Cham :
Springer Nature Switzerland, sept. 2024, p. 153-173, isbn : 978-3-031-
70896-1 (cité page 44).

[92] Iulia Bastys, Pauline Bolignano, Franco Raimondi, Daniel Schoepe, “Au-
tomatic Annotation of Confidential Data in Java Code,” in Founda-
tions and Practice of Security, E. Aïmeur , M. Laurent , R. Yaich ,
B. Dupont et J. Garcia-Alfaro , éd., Cham : Springer International
Publishing, juin 2022, p. 146-161, isbn : 978-3-031-08147-7 (cité page 47).

[93] Edward J. Schwartz, Thanassis Avgerinos, David Brumley, “All You Ever
Wanted to Know about Dynamic Taint Analysis and Forward Symbolic
Execution (but Might Have Been Afraid to Ask),” in 2010 IEEE Sympo-
sium on Security and Privacy, mai 2010, p. 317-331. doi : 10.1109/SP.
2010.26 (cité page 47).

[94] Hans Winderix, Jan Tobias Mühlberg, Frank Piessens, “Compiler-
Assisted Hardening of Embedded Software Against Interrupt Latency
Side-Channel Attacks,” in 2021 IEEE European Symposium on Secu-
rity and Privacy (EuroS&P), sept. 2021, p. 667-682. doi : 10.1109/
EuroSP51992.2021.00050 (cité page 49).

https://arxiv.org/abs/2409.07576
https://arxiv.org/abs/2409.07576
https://arxiv.org/abs/2409.07576
https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1145/2086696.2086714
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/SP.2010.26
https://doi.org/10.1109/EuroSP51992.2021.00050
https://doi.org/10.1109/EuroSP51992.2021.00050

Bibliographie 87

[95] Fangfei Liu, Hao Wu, Kenneth Mai, Ruby B. Lee, “Newcache : Secure
Cache Architecture Thwarting Cache Side-Channel Attacks,” IEEE Mi-
cro, t. 36, no 5, p. 8-16, oct. 2016. doi : 10.1109/MM.2016.85 (cité
pages 49, 50).

[96] Yao Wang, Andrew Ferraiuolo, Danfeng Zhang, Andrew C. Myers, G. Ed-
ward Suh, “SecDCP : secure dynamic cache partitioning for efficient
timing channel protection,” in Proceedings of the 53rd Annual Design
Automation Conference, sér. DAC ’16, Austin, Texas : Association for
Computing Machinery, juin 2016, isbn : 9781450342360. doi : 10.1145/
2897937.2898086. adresse : https://doi.org/10.1145/2897937.
2898086 (cité pages 49, 50).

[97] Federico Canale, Tim Güneysu, Gregor Leander, Jan Philipp Thoma,
Yosuke Todo, Rei Ueno, “SCARF : a low-latency block cipher for secure
cache-randomization,” in Proceedings of the 32nd USENIX Conference
on Security Symposium, sér. SEC ’23, Anaheim, CA, USA : USENIX
Association, août 2023, isbn : 978-1-939133-37-3 (cité page 50).

[98] Moritz Peters, Nicolas Gaudin, Jan Philipp Thoma, “On The Effect of Re-
placement Policies on The Security of Randomized Cache Architectures,”
in 19th ACM ASIA Conference on Computer and Communications Se-
curity (ACM ASIACCS 2024), juill. 2024 (cité pages 50, 68).

[99] Paul Kocher, Jann Horn, Anders Fogh, “Spectre Attacks : Exploiting Spe-
culative Execution,” in 2019 IEEE Symposium on Security and Privacy
(SP), mai 2019, p. 1-19. doi : 10.1109/SP.2019.00002 (cité page 52).

[100] Moritz Lipp, Michael Schwarz, Daniel Gruss, “Meltdown : reading kernel
memory from user space,” Commun. ACM, t. 63, no 6, p. 46-56, mai 2020,
issn : 0001-0782. doi : 10.1145/3357033. adresse : https://doi.org/
10.1145/3357033 (cité page 52).

[101] Muhammad Awais, Maria Mushtaq, Lirida Naviner, Florent Bruguier, Ja-
wad Haj Yahya, Pascal Benoit, “Decoding Attack Behaviors by Analyzing
Patterns in Instruction-Based Attacks using gem5,” in 2024 International
Workshop on Rapid System Prototyping (RSP), oct. 2024, p. 1-6. doi :
10.1109/RSP64122.2024.10871078 (cité page 53).

[102] Wei Zheng, Ying Wu, Xiaoxue Wu, “A survey of Intel SGX and its ap-
plications,” Frontiers of Computer Science, t. 15, no 3, déc. 2020, issn :
2095-2236. doi : 10.1007/s11704-019-9096-y. adresse : http://dx.
doi.org/10.1007/s11704-019-9096-y (cité page 53).

https://doi.org/10.1109/MM.2016.85
https://doi.org/10.1145/2897937.2898086
https://doi.org/10.1145/2897937.2898086
https://doi.org/10.1145/2897937.2898086
https://doi.org/10.1145/2897937.2898086
https://doi.org/10.1109/SP.2019.00002
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3357033
https://doi.org/10.1145/3357033
https://doi.org/10.1109/RSP64122.2024.10871078
https://doi.org/10.1007/s11704-019-9096-y
http://dx.doi.org/10.1007/s11704-019-9096-y
http://dx.doi.org/10.1007/s11704-019-9096-y

88 Bibliographie

[103] Pau-Chen Cheng, Wojciech Ozga, Enriquillo Valdez, “Intel TDX De-
mystified : A Top-Down Approach,” ACM Comput. Surv., t. 56, no 9,
avr. 2024, issn : 0360-0300. doi : 10.1145/3652597. adresse : https:
//doi.org/10.1145/3652597 (cité page 53).

[104] Sandro Pinto, Nuno Santos, “Demystifying Arm TrustZone : A Com-
prehensive Survey,” ACM Comput. Surv., t. 51, no 6, jan. 2019, issn :
0360-0300. doi : 10.1145/3291047. adresse : https://doi.org/10.
1145/3291047 (cité page 53).

[105] Erhu Feng, Xu Lu, Dong Du, “Scalable Memory Protection in the PEN-
GLAI Enclave,” in 15th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 21), USENIX Association, juill. 2021,
p. 275-294, isbn : 978-1-939133-22-9. adresse : https://www.usenix.
org/conference/osdi21/presentation/feng (cité pages 53, 54).

[106] Cesare Garlati, Sandro Pinto, “A Clean Slate Approach to Linux Se-
curity : RISC-V Enclaves,” in Embedded World Conference, Nurem-
berg, Germany : Embedded World, fév. 2020. adresse : https : / /
sandro2pinto.github.io/files/ew2020-linuxencl-riscv.pdf (cité
page 53).

[107] Victor Costan, Ilia Lebedev, Srinivas Devadas, “Sanctum : Minimal Hard-
ware Extensions for Strong Software Isolation,” in 25th USENIX Security
Symposium (USENIX Security 16), Austin, TX : USENIX Association,
août 2016, p. 857-874, isbn : 978-1-931971-32-4. adresse : https://www.
usenix.org/conference/usenixsecurity16/technical-sessions/
presentation/costan (cité page 54).

[108] Antonio Munoz, Ruben Rios, Rodrigo Roman, Javier Lopez, “A survey
on the (in)security of trusted execution environments,” Computers &
Security, t. 129, p. 103 180, juin 2023, issn : 0167-4048. doi : https:
//doi.org/10.1016/j.cose.2023.103180. adresse : https://www.
sciencedirect.com/science/article/pii/S0167404823000901 (cité
page 54).

[109] Samuel Weiser, Mario Werner, Ferdinand Brasser, Maja Malenko, Ste-
fan Mangard, Ahmad-Reza Sadeghi, “TIMBER-V : Tag-isolated memory
bringing fine-grained enclaves to RISC-V.,” in Proceedings of the 26th
Network and Distributed System Security Symposium (NDSS’19), The
Internet Society, fév. 2019. doi : 10.14722/ndss.2019.23068 (cité
page 54).

https://doi.org/10.1145/3652597
https://doi.org/10.1145/3652597
https://doi.org/10.1145/3652597
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://doi.org/10.1145/3291047
https://www.usenix.org/conference/osdi21/presentation/feng
https://www.usenix.org/conference/osdi21/presentation/feng
https://sandro2pinto.github.io/files/ew2020-linuxencl-riscv.pdf
https://sandro2pinto.github.io/files/ew2020-linuxencl-riscv.pdf
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://www.usenix.org/conference/usenixsecurity16/technical-sessions/presentation/costan
https://doi.org/https://doi.org/10.1016/j.cose.2023.103180
https://doi.org/https://doi.org/10.1016/j.cose.2023.103180
https://www.sciencedirect.com/science/article/pii/S0167404823000901
https://www.sciencedirect.com/science/article/pii/S0167404823000901
https://doi.org/10.14722/ndss.2019.23068

Bibliographie 89

[110] Raad Bahmani, Ferdinand Brasser, Ghada Dessouky, “CURE : A Se-
curity Architecture with CUstomizable and Resilient Enclaves,” in 30th
USENIX Security Symposium (USENIX Security 21), USENIX Associa-
tion, août 2021, p. 1073-1090, isbn : 978-1-939133-24-3. adresse : https:
//www.usenix.org/conference/usenixsecurity21/presentation/
bahmani (cité page 54).

[111] Ernie Brickell, “Technologies to Improve Platform Security,” in CHES -
Invited Talk, Intel Corporation, Nara, Japan, sept. 2011 (cité page 55).

[112] Weiyi Wu, Bryan Ford, “Deterministically Deterring Timing Attacks in
Deterland,” mai 2016. arXiv : 1504.07070 [cs.OS]. adresse : https:
//arxiv.org/abs/1504.07070 (cité page 55).

[113] Amittai Aviram, Shu-Chun Weng, Sen Hu, Bryan Ford, “Efficient system-
enforced deterministic parallelism,” Commun. ACM, t. 55, no 5, p. 111-
119, mai 2012, issn : 0001-0782. doi : 10.1145/2160718.2160742.
adresse : https://doi.org/10.1145/2160718.2160742 (cité page 55).

[114] Yinqian Zhang, Michael K. Reiter, “Düppel : retrofitting commodity ope-
rating systems to mitigate cache side channels in the cloud,” in CCS,
sér. CCS ’13, Berlin, Germany : Association for Computing Machinery,
nov. 2013, p. 827-838, isbn : 9781450324779. doi : 10.1145/2508859.
2516741. adresse : https://doi.org/10.1145/2508859.2516741 (cité
page 55).

[115] Mohit Tiwari, Xun Li, Hassan M G Wassel, Frederic T Chong, Timo-
thy Sherwood, “Execution leases : A hardware-supported mechanism for
enforcing strong non-interference,” in 2009 42nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO), déc. 2009, p. 493-
504. doi : 10.1145/1669112.1669174 (cité page 55).

[116] Taesoo Kim, Marcus Peinado, Gloria Mainar-Ruiz, “STEALTHMEM :
System-Level Protection Against Cache-Based Side Channel Attacks in
the Cloud,” in USENIX Security, Bellevue, WA : USENIX Association,
août 2012, p. 189-204, isbn : 978-931971-95-9. adresse : https://www.
usenix.org/conference/usenixsecurity12/technical-sessions/
presentation/kim (cité page 55).

[117] Ziqiao Zhou, Michael K. Reiter, Yinqian Zhang, “A Software Approach
to Defeating Side Channels in Last-Level Caches,” in CCS, sér. CCS
’16, Vienna, Austria : Association for Computing Machinery, oct. 2016,
p. 871-882, isbn : 9781450341394. doi : 10.1145/2976749.2978324.
adresse : https://doi.org/10.1145/2976749.2978324 (cité page 55).

https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://www.usenix.org/conference/usenixsecurity21/presentation/bahmani
https://arxiv.org/abs/1504.07070
https://arxiv.org/abs/1504.07070
https://arxiv.org/abs/1504.07070
https://doi.org/10.1145/2160718.2160742
https://doi.org/10.1145/2160718.2160742
https://doi.org/10.1145/2508859.2516741
https://doi.org/10.1145/2508859.2516741
https://doi.org/10.1145/2508859.2516741
https://doi.org/10.1145/1669112.1669174
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://www.usenix.org/conference/usenixsecurity12/technical-sessions/presentation/kim
https://doi.org/10.1145/2976749.2978324
https://doi.org/10.1145/2976749.2978324

90 Bibliographie

[118] Ghada Dessouky, Tommaso Frassetto, Ahmad-Reza Sadeghi, “Hyb-
Cache : Hybrid Side-Channel-Resilient Caches for Trusted Execution
Environments,” in 29th USENIX Security Symposium (USENIX Se-
curity 20), USENIX Association, août 2020, p. 451-468, isbn : 978-
1-939133-17-5. adresse : https : / / www . usenix . org / conference /
usenixsecurity20/presentation/dessouky (cité page 56).

[119] Daniel Townley, Kerem Arıkan, Yu David Liu, Dmitry Ponomarev, Oğuz
Ergin, “Composable Cachelets : Protecting Enclaves from Cache Side-
Channel Attacks,” in 31st USENIX Security Symposium (USENIX Se-
curity 22), Boston, MA : USENIX Association, août 2022, p. 2839-
2856, isbn : 978-1-939133-31-1. adresse : https://www.usenix.org/
conference/usenixsecurity22/presentation/townley (cité page 56).

[120] Lianying Zhao, He Shuang, Shengjie Xu, SoK : Hardware Security Support
for Trustworthy Execution, 2019. arXiv : 1910.04957 [cs.CR]. adresse :
https://arxiv.org/abs/1910.04957 (cité page 56).

[121] Moritz Schneider, Ramya Jayaram Masti, Shweta Shinde, Srdjan Cap-
kun, Ronald Perez, SoK : Hardware-supported Trusted Execution Envi-
ronments, 2022. arXiv : 2205.12742 [cs.CR]. adresse : https://arxiv.
org/abs/2205.12742 (cité page 56).

[122] Xiaoxuan Lou, Tianwei Zhang, Jun Jiang, Yinqian Zhang, “A Survey of
Microarchitectural Side-channel Vulnerabilities, Attacks, and Defenses in
Cryptography,” ACM Comput. Surv., t. 54, no 6, juill. 2021, issn : 0360-
0300. doi : 10.1145/3456629. adresse : https://doi.org/10.1145/
3456629 (cité page 59).

[123] Xiaohan Zhang, Jinwen Wang, Yueqiang Cheng, “Interface-Based Side
Channel in TEE-Assisted Networked Services,” IEEE/ACM Transactions
on Networking, t. 32, no 1, p. 613-626, fév. 2024. doi : 10.1109/TNET.
2023.3294019 (cité page 59).

[124] Aruna Jayasena, Richard Bachmann, Prabhat Mishra, “EvilCS : An Eva-
luation of Information Leakage through Context Switching on Security
Enclaves,” in 2024 Design, Automation & Test in Europe Conference &
Exhibition (DATE), mars 2024, p. 1-6. doi : 10.23919/DATE58400.2024.
10546809 (cité page 59).

[125] Cristiano Rodrigues, Daniel Oliveira, Sandro Pinto, “BUSted !!! Microar-
chitectural Side-Channel Attacks on the MCU Bus Interconnect,” in 2024
IEEE Symposium on Security and Privacy (SP), 2024, p. 3679-3696. doi :
10.1109/SP54263.2024.00062 (cité page 59).

https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity20/presentation/dessouky
https://www.usenix.org/conference/usenixsecurity22/presentation/townley
https://www.usenix.org/conference/usenixsecurity22/presentation/townley
https://arxiv.org/abs/1910.04957
https://arxiv.org/abs/1910.04957
https://arxiv.org/abs/2205.12742
https://arxiv.org/abs/2205.12742
https://arxiv.org/abs/2205.12742
https://doi.org/10.1145/3456629
https://doi.org/10.1145/3456629
https://doi.org/10.1145/3456629
https://doi.org/10.1109/TNET.2023.3294019
https://doi.org/10.1109/TNET.2023.3294019
https://doi.org/10.23919/DATE58400.2024.10546809
https://doi.org/10.23919/DATE58400.2024.10546809
https://doi.org/10.1109/SP54263.2024.00062

Bibliographie 91

[126] Zhao Zhang, Yong Zhang, Da Guo, Lei Yao, Zhao Li, “SecFedNIDS :
Robust defense for poisoning attack against federated learning-based
network intrusion detection system,” Future Generation Computer Sys-
tems, t. 134, p. 154-169, sept. 2022, issn : 0167-739X. doi : https:
//doi.org/10.1016/j.future.2022.04.010. adresse : https://www.
sciencedirect.com/science/article/pii/S0167739X22001339 (cité
page 59).

[127] Yuan-Cheng Lai, Jheng-Yan Lin, Ying-Dar Lin, “Two-phase Defense
Against Poisoning Attacks on Federated Learning-based Intrusion De-
tection,” Computers & Security, t. 129, p. 103 205, juin 2023, issn :
0167-4048. doi : https://doi.org/10.1016/j.cose.2023.103205.
adresse : https://www.sciencedirect.com/science/article/pii/
S0167404823001153 (cité page 59).

[128] Oussama Elmnaouri, Pascal Cotret, Vianney Lapotre, Loïc Lagadec,
“Enhancing Keystone Security Against Cache Timing Attacks : A Mo-
dular Approach,” in Colloque 2025 du GDR SoC2, Lorient, France, juin
2025. adresse : https://hal.science/hal-05056900 (cité page 67).

[129] Oussama Elmnaouri, Pascal Cotret, Vianney Lapotre, Loïc Lagadec,
“Enforcing RISC-V TEE Security Against Cache Timing Attacks,” in
International Workshops on Cryptographic architectures embedded in logic
devices, juin 2025 (cité page 67).

[130] Pierre Garreau, Pascal Cotret, Julien Francq, Jean-Christophe Cexus,
Loïc Lagadec, “A survey on versatile embedded Machine Learning hard-
ware acceleration,” t. 167, oct. 2025, p. 103 501. doi : https://doi.
org / 10 . 1016 / j . sysarc . 2025 . 103501. adresse : https : / / www .
sciencedirect.com/science/article/pii/S1383762125001730 (cité
page 68).

[131] Pierre Garreau, Pascal Cotret, Julien Francq, Jean-Christophe Cexus,
Loïc Lagadec, “RISC-V Embedded AI for IDS Applications,” in RESSI
2024 : Rendez-vous de la Recherche et de l’Enseignement de la Sécurité
des Systèmes d’Information, mai 2024 (cité page 68).

[132] Aya Jendoubi, Jean-Christophe Prévotet, Philippe Tanguy, Pascal Co-
tret, “Security of Dynamically Reconfigurable RISC-V Systems : I/O
Attack Focus,” in 39th Annual IEEE International Parallel & Distribu-
ted Processing Symposium (IEEE IPDPS 2025) : 32nd Reconfigurable
Architecture Workshop, Milan, Italy, juin 2025. adresse : https://hal.
science/hal-05117047 (cité page 68).

https://doi.org/https://doi.org/10.1016/j.future.2022.04.010
https://doi.org/https://doi.org/10.1016/j.future.2022.04.010
https://www.sciencedirect.com/science/article/pii/S0167739X22001339
https://www.sciencedirect.com/science/article/pii/S0167739X22001339
https://doi.org/https://doi.org/10.1016/j.cose.2023.103205
https://www.sciencedirect.com/science/article/pii/S0167404823001153
https://www.sciencedirect.com/science/article/pii/S0167404823001153
https://hal.science/hal-05056900
https://doi.org/https://doi.org/10.1016/j.sysarc.2025.103501
https://doi.org/https://doi.org/10.1016/j.sysarc.2025.103501
https://www.sciencedirect.com/science/article/pii/S1383762125001730
https://www.sciencedirect.com/science/article/pii/S1383762125001730
https://hal.science/hal-05117047
https://hal.science/hal-05117047

92 Bibliographie

[133] Aya Jendoubi, Jean-Christophe Prévotet, Philippe Tanguy, Pascal Co-
tret, “Enhancing Security in Heterogeneous Virtualized Systems : A Fo-
cus on I/O Attacks in the existence of IOMMU in a RISC-V architecture,”
in GDR SoC2, juin 2024 (cité page 68).

[134] Nicolas Gaudin, Vianney Lapôtre, Pascal Cotret, Guy Gogniat, “Ver-
rouillage des lignes de cache pour la lutte contre les attaques par canaux
auxiliaires exploitant les mémoires caches,” in Cyber On Board, mars 2024
(cité page 68).

[135] Nicolas Gaudin, Vianney Lapôtre, Pascal Cotret, Guy Gogniat, “Cache
locking against cache-based side-channel attacks,” in Ecole d’hiver Fran-
cophone sur les Technologies de Conception des Systèmes Embarqués
Hétérogènes (FETCH), fév. 2024 (cité page 68).

[136] Nicolas Gaudin, Vianney Lapôtre, Pascal Cotret, Guy Gogniat, “A
Fine-Grained Dynamic Partitioning Against Cache-Based Timing At-
tacks via Cache Locking,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), juill. 2024 (cité page 68).

[137] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, “Securing a high-level
language virtual machine through its ISA : Pharo as a case study,” in
GDR SoC2, juin 2021 (cité page 68).

[138] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, Rob Stewart, “Bench-
marking Quantized Neural Networks on FPGAs with FINN,” in SLOHA
- DATE Friday Workshop on System-level Design Methods for Deep Lear-
ning on Heterogeneous Architectures, fév. 2021 (cité page 68).

[139] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, “JIT Compiler Security
through Low-Cost RISC-V Extension,” in RAW - 30th Reconfigurable
Architectures Workshop, mai 2023 (cité page 68).

[140] Quentin Ducasse, Pascal Cotret, Loı̈c Lagadec, “War on JITs :
Software-Based Attacks and Hybrid Defenses for JIT Compilers - A Com-
prehensive Survey,” ACM Comput. Surv., avr. 2025, issn : 0360-0300.
doi : 10.1145/3731598. adresse : https://doi.org/10.1145/3731598
(cité page 68).

[141] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “Monitoring informa-
tion flows in heterogeneous SoCs with a dedicated coprocessor,” in GDR
SoC-SiP, juin 2018 (cité page 68).

https://doi.org/10.1145/3731598
https://doi.org/10.1145/3731598

Bibliographie 93

[142] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “A framework for ef-
ficient DIFT in real-world SoCs,” in 2017 27th International Conference
on Field Programmable Logic and Applications (FPL) - Demo session,
juill. 2017, p. 1-2 (cité page 68).

[143] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah, “A
MIPS-based coprocessor for information flow tracking in ARM SoCs,”
in 2018 International Conference on Reconfigurable Computing and FP-
GAs (Reconfig), déc. 2018, p. 1-8 (cité page 68).

[144] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah, “A novel
lightweight hardware-assisted static instrumentation approach for ARM
SoC using debug components,” in Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), déc. 2018, p. 1-6 (cité page 68).

[145] Muhammad Abdul Wahab, Pascal Cotret, “Pwning ARM Debug Com-
ponents for Sec-Related Stuff,” in Hack In the Box Security Conference
- CommSec track, avr. 2017 (cité page 68).

[146] Pascal Cotret, Muhammad Abdul Wahab, “TrustZone is not enough -
Hijacking debug components for embedded security,” in Chaos Commu-
nication Congress, déc. 2017 (cité page 68).

[147] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “ARMHEx : a hardware
extension for information flow tracking on ARM-based platforms,” in
RESSI 2017 (Rendez-Vous de la Recherche et de l’Enseignement de la
Sécurité des systèmes d’information), mai 2017 (cité page 68).

[148] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “A portable approach
for SoC-based Dynamic Information Flow Tracking implementations,” in
GDR SoC-SiP, juin 2016 (cité page 68).

[149] Muhammad A. Wahab, Pascal Cotret, Mounir N. Allah, Guillaume
Hiet, Vianney Lapôtre, Guy Gogniat, “ARMHEx : a hardware extension
for information flow tracking on ARM-based platforms,” in GDR SoC-
SiP, juin 2017 (cité page 68).

[150] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “Towards a hardware-
assisted information flow tracking ecosystem for ARM processors,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL), août 2016, p. 1-2. doi : 10.1109/FPL.2016.7577396
(cité page 68).

https://doi.org/10.1109/FPL.2016.7577396

94 Bibliographie

[151] Muhammad Abdul Wahab, Pascal Cotret, “A hardware coprocessor for
Zynq-based Dynamic Information Flow Tracking,” in Cryptographic Ar-
chitectures Embedded in Reconfigurable Devices, International Workshops
on, juin 2016 (cité page 68).

[152] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “ARMHEx : A hard-
ware extension for DIFT on ARM-based SoCs,” in 2017 27th Interna-
tional Conference on Field Programmable Logic and Applications (FPL),
juill. 2017, p. 1-7 (cité page 68).

Publications

Article en cours d’évaluation dans une revue
[39] Quentin Ducasse, Pascal Cotret, Loı̈c Lagadec, “JITDomain :

Instruction-Level JIT Code Isolation,” Microprocessors and Microsys-
tems, Elsevier , éd., août 2025, article en révision mineure (cité pages 26,
68).

Articles dans des revues internationales
[130] Pierre Garreau, Pascal Cotret, Julien Francq, Jean-Christophe Cexus,

Loïc Lagadec, “A survey on versatile embedded Machine Learning hard-
ware acceleration,” t. 167, oct. 2025, p. 103 501. doi : https://doi.
org / 10 . 1016 / j . sysarc . 2025 . 103501. adresse : https : / / www .
sciencedirect.com/science/article/pii/S1383762125001730 (cité
page 68).

[140] Quentin Ducasse, Pascal Cotret, Loı̈c Lagadec, “War on JITs :
Software-Based Attacks and Hybrid Defenses for JIT Compilers - A Com-
prehensive Survey,” ACM Comput. Surv., avr. 2025, issn : 0360-0300.
doi : 10.1145/3731598. adresse : https://doi.org/10.1145/3731598
(cité page 68).

[153] Pascal Cotret, Guy Gogniat, Martha Johanna Sepúlveda Flórez, “Pro-
tection of heterogeneous architectures on FPGAs : An approach based
on hardware firewalls,” Microprocessors and Microsystems, t. 42, p. 127-
141, mai 2016, issn : 0141-9331. doi : http://dx.doi.org/10.1016/
j.micpro.2016.01.013. adresse : http://www.sciencedirect.com/
science/article/pii/S0141933116000259.

Chapitres d’ouvrages
[154] Eduardo Wanderley, Romain Vaslin, Jérémie Crenne, “Security FPGA

Analysis,” English, in Security Trends for FPGAS, B. Badrignans , J. L.
Danger , V. Fischer , G. Gogniat et L. Torres , éd., Springer Nether-
lands, 2011, p. 7-46, isbn : 978-94-007-1337-6. doi : 10.1007/978-94-
007-1338-3_2. adresse : http://dx.doi.org/10.1007/978-94-007-
1338-3_2.

https://doi.org/https://doi.org/10.1016/j.sysarc.2025.103501
https://doi.org/https://doi.org/10.1016/j.sysarc.2025.103501
https://www.sciencedirect.com/science/article/pii/S1383762125001730
https://www.sciencedirect.com/science/article/pii/S1383762125001730
https://doi.org/10.1145/3731598
https://doi.org/10.1145/3731598
https://doi.org/http://dx.doi.org/10.1016/j.micpro.2016.01.013
https://doi.org/http://dx.doi.org/10.1016/j.micpro.2016.01.013
http://www.sciencedirect.com/science/article/pii/S0141933116000259
http://www.sciencedirect.com/science/article/pii/S0141933116000259
https://doi.org/10.1007/978-94-007-1338-3_2
https://doi.org/10.1007/978-94-007-1338-3_2
http://dx.doi.org/10.1007/978-94-007-1338-3_2
http://dx.doi.org/10.1007/978-94-007-1338-3_2

96 Bibliographie

Articles dans des revues nationales
[155] Pascal Cotret, Guy Gogniat, “Protection des architectures hétérogènes

sur FPGA : une approche par pare-feux matériels,” Techniques de l’In-
genieur, Référence IN175 -10 pages, fév. 2014. adresse : https://hal.
inria.fr/hal-00866646.

Conférences/communications invitées
[156] Pascal Cotret, “Monitoring program execution (and more) on ARM

processors,” in Toulouse Hacking Convention, mars 2018, p. 1-2.
[157] Pascal Cotret, “Towards a hardware-assisted information flow Tracking

Approach for ARM Processors,” in France/Japan Cybersecurity work-
shop, mars 2016, p. 1-2.

Articles dans des conférences/workshops à au-
dience internationale avec actes et comité de sé-
lection
[33] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, “Gigue : A JIT Code

Binary Generator for Hardware Testing,” in 2023 Workshop on Virtual
Machines and Language Implementations, oct. 2023 (cité pages 18, 68).

[98] Moritz Peters, Nicolas Gaudin, Jan Philipp Thoma, “On The Effect of Re-
placement Policies on The Security of Randomized Cache Architectures,”
in 19th ACM ASIA Conference on Computer and Communications Se-
curity (ACM ASIACCS 2024), juill. 2024 (cité pages 50, 68).

[132] Aya Jendoubi, Jean-Christophe Prévotet, Philippe Tanguy, Pascal Co-
tret, “Security of Dynamically Reconfigurable RISC-V Systems : I/O
Attack Focus,” in 39th Annual IEEE International Parallel & Distribu-
ted Processing Symposium (IEEE IPDPS 2025) : 32nd Reconfigurable
Architecture Workshop, Milan, Italy, juin 2025. adresse : https://hal.
science/hal-05117047 (cité page 68).

[136] Nicolas Gaudin, Vianney Lapôtre, Pascal Cotret, Guy Gogniat, “A
Fine-Grained Dynamic Partitioning Against Cache-Based Timing At-
tacks via Cache Locking,” in IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), juill. 2024 (cité page 68).

https://hal.inria.fr/hal-00866646
https://hal.inria.fr/hal-00866646
https://hal.science/hal-05117047
https://hal.science/hal-05117047

Bibliographie 97

[138] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, Rob Stewart, “Bench-
marking Quantized Neural Networks on FPGAs with FINN,” in SLOHA
- DATE Friday Workshop on System-level Design Methods for Deep Lear-
ning on Heterogeneous Architectures, fév. 2021 (cité page 68).

[139] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, “JIT Compiler Security
through Low-Cost RISC-V Extension,” in RAW - 30th Reconfigurable
Architectures Workshop, mai 2023 (cité page 68).

[142] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “A framework for ef-
ficient DIFT in real-world SoCs,” in 2017 27th International Conference
on Field Programmable Logic and Applications (FPL) - Demo session,
juill. 2017, p. 1-2 (cité page 68).

[143] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah, “A
MIPS-based coprocessor for information flow tracking in ARM SoCs,”
in 2018 International Conference on Reconfigurable Computing and FP-
GAs (Reconfig), déc. 2018, p. 1-8 (cité page 68).

[144] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah, “A novel
lightweight hardware-assisted static instrumentation approach for ARM
SoC using debug components,” in Asian Hardware Oriented Security and
Trust Symposium (AsianHOST), déc. 2018, p. 1-6 (cité page 68).

[150] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “Towards a hardware-
assisted information flow tracking ecosystem for ARM processors,” in
2016 26th International Conference on Field Programmable Logic and
Applications (FPL), août 2016, p. 1-2. doi : 10.1109/FPL.2016.7577396
(cité page 68).

[152] Muhammad Abdul Wahab, Pascal Cotret, Mounit Nasr Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “ARMHEx : A hard-
ware extension for DIFT on ARM-based SoCs,” in 2017 27th Interna-
tional Conference on Field Programmable Logic and Applications (FPL),
juill. 2017, p. 1-7 (cité page 68).

[158] Jean-Loup Hatchikian-Houdot, Nicolas Gaudin, Pascal Cotret, “Work
in Progress : Thwarting Timing Attacks in Microcontrollers using Fine-
grained Hardware Protections,” in SILM’23 - IEEE EuroSP workshop,
juill. 2023.

[159] Quentin Ducasse, Guille Polito, Pablo Tesone, Pascal Cotret, Loïc La-
gadec, “Porting a JIT compiler to RISC-V : Challenges and Opportuni-
ties,” in MPLR - Managed Programming Languages and Runtimes 2022,
sept. 2022.

https://doi.org/10.1109/FPL.2016.7577396

98 Bibliographie

[160] Pascal Cotret, Stéphane Chevobbe, Mehdi Darouich, “Embedded
wavelet-based face recognition under variable position,” in SPIE Elec-
tronic Imaging, t. 9400, SPIE Electronic Imaging, fév. 2015, 94000A-
94000A-12. doi : 10.1117/12.2083046. adresse : http://dx.doi.org/
10.1117/12.2083046.

[161] Pascal Cotret, Guy Gogniat, Jean-Philippe Diguet, Jérémie Crenne,
“Lightweight reconfiguration security services for AXI-based MPSoCs,”
in 22nd International Conference on Field Programmable Logic and Ap-
plications (FPL), août 2012, p. 655-658. doi : 10.1109/FPL.2012.
6339233.

[162] Pascal Cotret, Florian Devic, Guy Gogniat, Benoit Badrignans, Benoit
Torres, “Security enhancements for FPGA-based MPSoCs : A boot-to-
runtime protection flow for an embedded Linux-based system,” in 7th
International Workshop on Reconfigurable and Communication-Centric
Systems-on-Chip (ReCoSoC), juill. 2012, p. 1-8. doi : 10.1109/ReCoSoC.
2012.6322896.

[163] Pascal Cotret, Jérémie Crenne, Guy Gogniat, Jean-Philippe Diguet,
“Bus-based MPSoC Security through Communication Protection : A
Latency-efficient Alternative,” in 2012 IEEE 20th International Sympo-
sium on Field-Programmable Custom Computing Machines, avr. 2012,
p. 200-207. doi : 10.1109/FCCM.2012.42.

[164] Jérémie Crenne, Pascal Cotret, Guy Gogniat, Russell Tessier, Jean-
Philippe Diguet, “Efficient key-dependent message authentication in re-
configurable hardware,” in Field-Programmable Technology (FPT), 2011
International Conference on, déc. 2011, p. 1-6. doi : 10.1109/FPT.2011.
6132722.

[165] Pascal Cotret, Jérémie Crenne, Guy Gogniat, Jean-Philippe Diguet,
Lubos Gaspar, Guillaume Duc, “Distributed Security for Communica-
tions and Memories in a Multiprocessor Architecture,” in Parallel and
Distributed Processing Workshops and Phd Forum (IPDPSW), 2011
IEEE International Symposium on, mai 2011, p. 326-329. doi : 10.1109/
IPDPS.2011.158.

[166] Lubos Gaspar, Viktor Fischer, Florent Bernard, Lilian Bossuet, Pascal
Cotret, “HCrypt : A Novel Concept of Crypto-processor with Secured
Key Management,” in Reconfigurable Computing and FPGAs (ReCon-
Fig), 2010 International Conference on, déc. 2010, p. 280-285. doi :
10.1109/ReConFig.2010.38.

https://doi.org/10.1117/12.2083046
http://dx.doi.org/10.1117/12.2083046
http://dx.doi.org/10.1117/12.2083046
https://doi.org/10.1109/FPL.2012.6339233
https://doi.org/10.1109/FPL.2012.6339233
https://doi.org/10.1109/ReCoSoC.2012.6322896
https://doi.org/10.1109/ReCoSoC.2012.6322896
https://doi.org/10.1109/FCCM.2012.42
https://doi.org/10.1109/FPT.2011.6132722
https://doi.org/10.1109/FPT.2011.6132722
https://doi.org/10.1109/IPDPS.2011.158
https://doi.org/10.1109/IPDPS.2011.158
https://doi.org/10.1109/ReConFig.2010.38

Bibliographie 99

Articles dans des conférences/workshops à au-
dience internationale avec comité de sélection
[167] Pascal Cotret, Vipin Kizheppatt, Christophe Moy, “Multi-standard

OFDM transceiver for heterogeneous system-on-chips,” in WinnComm
Europe, oct. 2016.

Articles dans des conférences/workshops à au-
dience nationale avec actes et comité de sélec-
tion
[168] Valérie Viet Viem Tong, Benoît Fournier, Guillaume Fournier, Leopold

Ouairy, Pascal Cotret, Gilles Guette, “Dis, c’est quoi là haut dans le
ciel ? - C’est un Linux, mon petit,” in Magazine MISC, juill. 2019.

[169] Guillaume Fournier, Paul Audren de Kerdrel, Pascal Cotret, Valérie
Viet Triem Tong, “DroneJack : kiss your drones goodbye !” In SSTIC
(Symposium sur la sécurité des technologies de l’information et des com-
munications), juin 2017.

Articles dans des conférences/workshops à au-
dience nationale avec comité de sélection
[170] Guillaume Fournier, Pierre Matoussowsky, Pascal Cotret, “Hit the Key-

Jack : stealing data from your daily wireless devices incognito,” in Jour-
nées C&ESAR 2016, nov. 2016.

[171] Pascal Cotret, Stéphane Chevobbe, Mehdi Darouich, “Reconnaissance
faciale basée sur les ondelettes robuste et optimisée pour les systèmes
embarqués,” in Colloque GRETSI, sept. 2015.

[172] Pascal Cotret, Jérémie Crenne, Guy Gogniat, “Sécurisation des com-
munications dans une architecture multiprocesseur,” in MajecSTIC (MA-
nifestation des JEunes Chercheurs en Sciences et Technologies de l’In-
formation et de la Communication), oct. 2010, p. 163-170.

100 Bibliographie

Communications orales (sans acte) ou posters ou
séminaires autres
[131] Pierre Garreau, Pascal Cotret, Julien Francq, Jean-Christophe Cexus,

Loïc Lagadec, “RISC-V Embedded AI for IDS Applications,” in RESSI
2024 : Rendez-vous de la Recherche et de l’Enseignement de la Sécurité
des Systèmes d’Information, mai 2024 (cité page 68).

[133] Aya Jendoubi, Jean-Christophe Prévotet, Philippe Tanguy, Pascal Co-
tret, “Enhancing Security in Heterogeneous Virtualized Systems : A Fo-
cus on I/O Attacks in the existence of IOMMU in a RISC-V architecture,”
in GDR SoC2, juin 2024 (cité page 68).

[134] Nicolas Gaudin, Vianney Lapôtre, Pascal Cotret, Guy Gogniat, “Ver-
rouillage des lignes de cache pour la lutte contre les attaques par canaux
auxiliaires exploitant les mémoires caches,” in Cyber On Board, mars 2024
(cité page 68).

[135] Nicolas Gaudin, Vianney Lapôtre, Pascal Cotret, Guy Gogniat, “Cache
locking against cache-based side-channel attacks,” in Ecole d’hiver Fran-
cophone sur les Technologies de Conception des Systèmes Embarqués
Hétérogènes (FETCH), fév. 2024 (cité page 68).

[137] Quentin Ducasse, Pascal Cotret, Loïc Lagadec, “Securing a high-level
language virtual machine through its ISA : Pharo as a case study,” in
GDR SoC2, juin 2021 (cité page 68).

[141] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “Monitoring informa-
tion flows in heterogeneous SoCs with a dedicated coprocessor,” in GDR
SoC-SiP, juin 2018 (cité page 68).

[147] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “ARMHEx : a hardware
extension for information flow tracking on ARM-based platforms,” in
RESSI 2017 (Rendez-Vous de la Recherche et de l’Enseignement de la
Sécurité des systèmes d’information), mai 2017 (cité page 68).

[148] Muhammad Abdul Wahab, Pascal Cotret, Mounir Nasr Allah Allah,
Guillaume Hiet, Vianney Lapôtre, Guy Gogniat, “A portable approach
for SoC-based Dynamic Information Flow Tracking implementations,” in
GDR SoC-SiP, juin 2016 (cité page 68).

Bibliographie 101

[149] Muhammad A. Wahab, Pascal Cotret, Mounir N. Allah, Guillaume
Hiet, Vianney Lapôtre, Guy Gogniat, “ARMHEx : a hardware extension
for information flow tracking on ARM-based platforms,” in GDR SoC-
SiP, juin 2017 (cité page 68).

[151] Muhammad Abdul Wahab, Pascal Cotret, “A hardware coprocessor for
Zynq-based Dynamic Information Flow Tracking,” in Cryptographic Ar-
chitectures Embedded in Reconfigurable Devices, International Workshops
on, juin 2016 (cité page 68).

[173] Guillermo Polito, Stéphane Ducasse, Pablo Tesone, “Remarkable Chal-
lenges of High-Performance Language Virtual Machines,” in Research Re-
port Inria Lille - Nord Europe, sept. 2022.

[174] Pascal Cotret, Guillaume Hiet, Guy Gogniat, “HardBlare : an effi-
cient hardware-assisted DIFC for non-modified embedded processors,” in
CHES (Workshop on Cryptographic Hardware and Embedded Systems),
juill. 2015.

[175] Pascal Cotret, Guy Gogniat, Jean-Philippe Diguet, “Self-configuration
of latency-efficient security enhancements for MPSoC communications
monitoring,” in GDR SoC-SiP, juin 2012.

[176] Pascal Cotret, Guy Gogniat, Jean-Philippe Diguet, Jérémie Crenne,
“Self-reconfigurable security-enhanced communications in FPGA-based
MPSoCs,” in Cryptographic Architectures Embedded in Reconfigurable
Devices, International Workshops on, juin 2012.

[177] Pascal Cotret, Jérémie Crenne, Guy Gogniat, Jean-Philippe Diguet,
“Protecting communications in bus-based MPSoCs using hardware fire-
walls,” in Cryptographic Architectures Embedded in Reconfigurable De-
vices, International Workshops on, juin 2011.

[178] Pascal Cotret, Jérémie Crenne, Guy Gogniat, Jean-Philippe Diguet,
“A case study for distributed and efficient protection of communications
in reconfigurable embedded systems,” in GDR SoC-SiP, juin 2011.

[179] Pascal Cotret, Jérémie Crenne, Guy Gogniat, “Secured communica-
tions within a multiprocessor architecture,” in GDR SoC-SiP, juin 2010.

	Introduction
	Introduction
	Structure du manuscrit

	Contributions à la sécurité hybride logiciel - matériel
	HardBlare
	Introduction au Dynamic Information Flow Tracking (DIFT)
	Approches logicielles-matérielles pour le DIFT
	HardBlare: une approche DIFT pour ARM
	Évaluation et résultats

	Protection de machines virtuelles embarquées pour RISC-V
	Introduction sur les VMs et leur sécurité
	Gigue: un générateur de logiciels
	JITDomain: une protection par le matériel

	Conclusion et perspectives

	Contributions aux architectures matérielles sécurisées
	Protection d'une IOMMU
	Contexte du projet
	Sécurité des accès mémoire avec IOMMU dans un environnement RISC-V
	État de l'art
	Plateforme expérimentale

	Définition d'architectures d'IA pour de la détection d'intrusion
	Contexte du projet
	L'intelligence artificielle au service de la détection d'intrusions
	Accélération de fonctions de Machine Learning

	Conclusion et perspectives

	Contributions sur la sécurité au niveau micro-architecture
	Protection des mémoires caches contre les timing attacks
	Micro-architecture d'un système embarqué
	Contexte du projet SCRATCHS
	lock/unlock, un mécanisme de verrouillage de lignes de cache
	Une solution ``hybride''

	Protection des mémoires avec l'introduction de TEE
	Problématique
	Environnements d'exécution sécurisés pour architecture RISC-V
	Solution envisagée

	Conclusion et perspectives

	Conclusion et perspectives
	Conclusion
	Perspectives

	Liste d'abréviations
	Annexes
	Informations complémentaires
	CV résumé
	Liste des thèses co-encadrées
	Jurys et expertises
	Responsabilités scientifiques
	Responsabilités administratives
	Synthèse des enseignements

	Bibliographie
	Publications

