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Abstract—This work details a hardware-assisted approach for
information flow tracking implemented on reconfigurable chips.
Current solutions are either time-consuming or hardly portable
(modifications of both sofware/hardware layers). This work takes
benefits from debug components included in ARMv7 processors
to retrieve details on instructions committed by the CPU. First
results in terms of silicon area and time overheads are also given.

I. INTRODUCTION

Nowadays, high-technology systems are highly threatened
by security issues. In the context of software security, original
solutions such as DIFT (Dynamic Information Flow Tracking)
have been proposed since the 2000s. DIFT aims to ensure
the application control flow by adding metadata (also known
as tags) to information containers (e.g. registers, memory
addresses). These tags are checked at runtime. DIFT already
demonstrated a detection of a wide range of attacks such as
SQL injections and buffer overflow.

However, existing solutions are not widely used in mod-
ern SoCs due to hardware and software dependencies. This
work provides a clever DIFT implementation for recent SoCs
without compromising their security level. This manuscript
also describes the internal structure of a new hardware DIFT
coprocessor and its implementation results.

Section II presents the most relevant related works. Then,
Section III describes the main objectives of this work. Sec-
tion IV presents the internal mechanisms and implementation
results. Finally, Section V gives some conclusions and future
perspectives.

II. RELATED WORKS

First and foremost, DIFT implementations were primarily
performed in software (without any hardware extensions) as
done by Newsome et al. [1]. However, time overheads were
too high (from 300% up to 3700%). In order to decrease
processing times, several hardware extensions were proposed
providing lower penalties at the expense of flexibility ([2], [3],
[4]).

Kannan et al. [5] suggested to separate tags computation
from the main application flow: a dedicated coprocessor
handles tags, allowing the CPU to run faster. Furthermore, it
allows to run simultaneously multiple DIFT checking rules.

More recently, other solutions aimed to add features and
improve performances shown in [5]. For instance, Deng et
al. [6], [7] proposed a solution to implement DIFT and
other similar runtime monitoring techniques such as UMC
(Uninitialized Memory Check) or BC (Boundary Check).

Heo et al. [8] proposed a system-level approach to imple-
ment DIFT and other related techniques. Information required
by the coprocessor for tags computation is added to the
application source code through binary instrumentation. This
information is executed at runtime: it sends data from the CPU
to a FIFO queue read by the coprocessor. This approach, even
though more realistic and generic, presents some drawbacks:
1) information leakage at the interface between the CPU and
the coprocessor; 2) code injection attacks may not be detected
as the injected code is not instrumented; 3) added instructions
through binary instrumentation are architecture-dependent.

Table I is a qualitative comparison of some previous works.
[5], [6] implemented DIFT using a softcore processor. In both
cases, there are modifications of the CPU itself in order to
export information. In this work, the main constraint is that
the CPU is an ASIC: however, it will be easier to implement
on several SoC based on the same architecture.

TABLE I
BRIEF COMPARISON OF PREVIOUS WORKS

Approaches Kannan [5] Deng [6] Heo [8]
Hardcore portability No No Yes
Time Overhead + ++ +
Surface Overhead + - -
Main CPU Softcore Softcore Softcore

III. OBJECTIVES

Due to inflexibility and time overheads, DIFT is hardly
adopted in modern SoCs. The main goal of this work is to
provide a flexible approach for hardware-assisted DIFT based
on a standard OS and a heterogeneous architecture such as
Xilinx Zynq or Altera DE1-SoC. This work promotes DIFT
by proposing a solution with several features:

• Targeting unmodified processors. Previous works used
a softcore LEON3. Zynq devices contain an ARM pro-
cessor which cannot be modified.
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• Scalability. At first, this work focuses on single-core
CPUs. An extension to multicore architectures is planned
in the future.

• Efficiency and flexibility. It must be a low-area and fast
solution: the processor must not wait for the coprocessor
to complete DIFT tasks (at least, it may halt for the
shortest possible time).

• Secure tags computation. It is assumed that tags and
DIFT outputs must not be revealed to an unknown
authority.

IV. CURRENT STATUS AND PRELIMINARY RESULTS

The overall architecture used in this work is shown in Figure
1. Information required by the coprocessor for tags computa-
tion is partially recovered using existing debug components
available in ARM processors (also known as Coresight com-
ponents). Remaining information is obtained through software
analysis.

Fig. 1. Overview of the hardware-assisted DIFT architecture implemented on
a Zynq device

A. Global approach

Fig. 2. Coresight Components on Zedboard [9]

Coresight components (Figure 2) can be used to debug
(or trace) in an efficient manner multicore processors. A
PTM (Program Trace Macrocell) is assigned to each CPU

core: PTMs generate traces (e.g. partial inputs for DIFT
computations). Traces only provide runtime information on
instructions modifying the program counter (e.g. branches).
Traces are transmitted through the funnel and replicator and
then pushed in trace sinks (ETB and TPIU). ETB (Embedded
Trace Buffer) is able to store traces in an 4KB on-chip RAM
while TPIU (Trace Port Interface Unit) can send it to the
programmable logic through the EMIO (Extended Multiplexed
I/O) pins.

On the PL side, traces are decoded by the PFT decoder
(Program Flow Trace, see Figure 1) and given in a format
readable by the DIFT coprocessor. Tag dependencies block
contains information obtained through software analysis and
rules to handle tags. DIFT coprocessor reads traces given by
the PFT decoder and finds which information containers must
be propagated. Then, it looks for related tags in TRF (Tag Reg-
ister File) or MR (Memory tags): TRF contains tags of each
CPU register while MR contains tags for memory locations.
The granularity of tags is a user-defined parameter. Finally,
the DIFT coprocessor looks for security policy violations and
eventually raises an exception.

B. Results

1) Traces generation: The approach described in this work
is at least compatible with SoCs combining an ARM Cortex-
A9 processor with a FPGA: Xilinx ZedBoard is the experiment
platform in this work. All synthesis were done in Vivado
2014.4. Xilinx Standalone OS was first used to develop Core-
sight components drivers in order to understand the features
offered by such modules and to verify trace contents.

Coresight drivers for standard Linux are currently being
studied and compiled in a Yocto recipe. Traces have been
successfully recovered in ETB; however, parasite traces are
generated due to context switches.

2) Implementation results: For MiBench programs, the
overhead introduced by Coresight components is negligible.
As tracing components are in hardware and separated from
CPU core, almost no overhead is observed. However, the worst
case scenario is not evaluated yet and further testing with
other benchmarks needs to be done before pronouncing on
the efficiency of Coresight components.

Area results of TRF and PFT Decoder IPs are shown in
Table II. Percentages are shown relatively to a Microblaze
softcore with minimum area configuration (without caches nor
BRAMs).

TABLE II
IP SIZE FOR ZEDBOARD (ZYNQ Z7020)

IP Name Slice LUTs Slice Registers Slice
Microblaze 824 530 300
PFT Decoder 308 (37%) 222 (42%) 110(37%)
TRF 49 (6%) 64 (12%) 13 (4%)



V. CONCLUSION AND FUTURE WORK

A first prototype is currently being developped to demon-
strate the feasibility of the approach proposed in this work.
Next steps are to build a full-featured system including a
secure DIFT coprocessor. Then, DIFT on both Cortex-A9
cores will be implemented by duplicating DIFT coprocessor
and other IPs. Dynamic partial reconfiguration will be studied
to address energy consumption issues. The proposed approach
is not specific to ARM hardcores and may well be adapted to
Intel cores using Intel Processor Trace components.
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