
ARMHEx: a hardware extension for information flow tracking on ARM-based platforms
Muhammad Abdul Wahabα, Pascal Cotretα, Mounir Nasr Allahβ , Guillaume Hietβ

Vianney Lapôtreγ , Guy Gogniatγ
α IETR / SCEE research group, firstname.lastname@centralesupelec.fr

β INRIA / CIDRE research group, firstname.lastname@centralesupelec.fr
γ Lab-STICC / University of South Brittany, firstname.lastname@univ-ubs.fr

Abstract
Security in embedded systems is a major concern for several

years. Untrustworthy authorities use a wide range of both hard-
ware and software attacks. This paper introduces ARMHEx, a
practical solution targeting DIFT (Dynamic Information Flow
Tracking) implementations on ARM-based SoCs. Existing DIFT
solutions are either hardly portable to SoCs or bring unsuitable
time overheads. ARMHEx overcomes both issues using modern
debugging CPU features, along with a coprocessor implemented
in FPGA logic. This work demonstrates how ARMHEx performs
DIFT with negligible communication costs.

1 Introduction
During the last decade, several security vulnerabilities have

been discovered. Even if patches were delivered, there is always
a game of cat and mouse between security developers and hack-
ers. Embedded systems are a target of choice for attackers. In-
deed many vulnerabilities have been discovered on such systems.
A first solution to tackle this problem consists in reducing the
number of vulnerabilities by using different techniques such as
patch management, careful code reviews, static analyses. How-
ever, none of these techniques are sufficient, in practice, to ensure
the absence of vulnerabilities on a complex system made of mul-
tiple applications. DIFT (Information Flow Tracking) is an ap-
pealing solution that consists in tracking the dissemination of data
inside the system. DIFT consists of performing three operations:

1. Tag initialization: Each information container (e.g. file,
variable, memory word, etc) is given a tag. Those tags corre-
sponds to the security level or the type of data they contained.

2. Tag propagation: Each time an instruction is executed on
the CPU, tags are propagated from source operands to desti-
nation operands to track information flows.

3. Tag Check: To ensure that critical information is not handled
by untrusted functions or entities, tags are checked with a
security policy at runtime and on a regular basis.

This paper is organized as follows. Section 2 introduces main
contributions regarding DIFT solutions. Our proposed solution
ARMHEx is described in Section 3. Then, implementation re-
sults are given in Section 4 and compared to state of the art work.
Finally, Section 5 gives some conclusions and future perspectives
for ARMHEx.
2 Related work

Software solutions for DIFT are generally unusable in practice.
For single-core architectures, the CPU must execute the main ap-
plication and DIFT-related operations. Therefore, extensive time
overheads (at least 300%) can be expected as the same hardware
unit has to perform both operations [10, 7, 1]. To overcome those
overheads, hardware mechanisms were implemented in DIFT so-
lutions. We can distinguish three main approaches:

1. In-core [2]. This approach relies on a deeply revised pro-
cessor pipeline. Each stage of the pipeline is duplicated with
a hardware module in order to propagate tags all along the
program execution.

2. Offloading [9]. In this case, DIFT operations are computed
by a second general purpose processor.

3. Off-core [6, 4, 5, 3]. This approach seems similar to the of-
floading one. However, DIFT is performed on a dedicated
unit instead of a general purpose processor. ARMHEx is
based on this approach but differs in its implementation: the
application runs on a hardcore (rather than softcore as in pre-
vious works) and the information required for DIFT is recov-
ered through debug components and modified compiler.

3 ARMHEx approach

ELF File

.text ...

Operating System

ARM
ARMHEx

Coprocessor

LLVM IR

Static Analysis

traces

Syscalls

interrupt

Source code (C, Ocaml…)

.annot

tags for initialization, 
tags related to syscalls

Load
.annot

Load
.text

...

Figure 1: Overall architecture

3.1 General Overview
Figure 1 sums up the overall architecture of both software and

hardware parts. The source code file is compiled to obtain the ex-
ecutable elf file. During compilation, static analysis is done to get
an additional section .annot. This section contains tag prop-
agation instructions that are executed by ARMHEx coprocessor.
It is loaded by the OS to a memory accessible by ARMHEx co-
processor when binary (elf file) is launched on ARM CPU. The
operating system sends information on tag initialization operation
and system calls to ARMHEx coprocessor. Traces are recovered
by ARMHEx coprocessor thanks to CoreSight components.

In order to decouple application execution from tag computa-
tion, ARMHEx coprocessor requires at least three pieces of infor-
mation to compute DIFT operations: (i) PC register value, (ii) in-
struction encoding and (iii) load/store memory addresses. By
using CoreSight components, PC register value and some mem-
ory addresses are partially retrieved. Missing information about
memory addresses and instruction encoding is obtained through
static analysis.

mailto:firstname.lastname@centralesupelec.fr
mailto:firstname.lastname@centralesupelec.fr
mailto:firstname.lastname@univ-ubs.fr


Table 1: Example code and corresponding trace

Assembly code Trace packets Analysis
- A-Sync
- I-Sync
860c: sub sp, sp, #28 - static
8610: bl 8480 BAP dynamic
8614: mov r3, r0 - static
8618: cmp r3, #0 - static
861c: beq 864c BAP/Atom dynamic

3.2 ARMHEx software requirements
ARMHEx uses static analysis to recover partial information

required for DIFT analysis. For instance, if the code presented
in Table 1 is considered, the information about sub, mov and
cmp instructions will be obtained through static analysis. As a re-
sult, a corresponding tag propagation instruction will be obtained
for each of these instructions. Some examples of tag propaga-
tion instructions are shown in Table 2. R is used to denote the
tag of register R. For instance, for the first instruction in Table
2, the corresponding propagation instruction is to associate tags
of operand R1 and R2 towards the tag of destination register R0.
A section .annot, ignored by the Linux kernel, is added to the
binary during compilation which contains all the tag propagation
instructions that need to be executed by ARMHEx coprocessor.

Table 2: Example tag propagation instructions
Example Instruction Corresponding tag propagation instruction
ADD R0,R1,R2 R0 = R1 OR R2
LDR R3, [SP+OFFSET] R3 = @Mem(SP+OFFSET)
STR R0, [R5,R1] @Mem(R5+R1) = R0

3.3 CoreSight components
CoreSight components are a set of IP blocks providing

hardware-assisted software tracing. These components are used
for debug and profiling purposes. For instance, they can be used
to find software bugs and errors or even for CPU profiling (num-
ber of cache misses/hits). They are present in Cortex-A, Cortex-M
and Cortex-R families of ARM processors. ARMHEx uses these
components to retrieve information on instructions committed by
the CPU: as a consequence, it can be done only at runtime. Table
1 shows that the trace always starts with synchronization packets
A-Sync and I-Sync. Then bl and beq instructions generate
trace packets. If a BAP packet is generated, the branch was taken.
Otherwise, an atom packet is generated. The Linux driver for
CoreSight components was not fully featured. We developed a
patch that is under integration in the next Linux kernel release.

4 Implementation results

Implementations were done on a Xilinx Zedboard including
a Z-7020 SoC (dual-core Cortex-A9 running at 667MHz and an
Artix-7 FPGA). Vivado 2016.4 tools were used for synthesis and
implementation. The FPGA logic has around 85K logic cells and
560 KB of Block RAMs. Microblaze is used as DIFT coprocessor
for a proof of concept.

Table 3 shows a performance comparison of ARMHEx with
previous off-core approaches. Unlike previous works, ARMHEx
has the benefit of being based on an ARM hardcore processor: it

Table 3: Performance comparison with off-core approaches
Approaches Kannan [6] Deng [4] Heo [5], Lee [8] ARMHEx
Hardcore portability No No Yes Yes
Main CPU Softcore Softcore Softcore Hardcore
Communication overhead N/A N/A 60% 6.4%
Surface overhead 7.64% 14.8% 14.47% <0.01%
Max frequency N/A 256 MHz N/A 250 MHz

opens interesting perspectives as this work is easily portable to ex-
isting embedded systems. Approaches proposed by Heo [5] and
Lee [8] requires architectural modifications to be implemented on
other SoCs. In terms of area, ARMHEx has the best processor/co-
processor ratio. This is because, ARMHEx targets ARM Cortex-
A9 core which has a large number of gates compared to softcores
considered in related work. In addition, the communication cost
between CPU and ARMHEx coprocessor is 90% better than Heo
et al. [5]. Furthermore, ARMHEx is able to operate at a frequency
up to 250 MHz (bridled at 100 MHz for the first implementation
because of a Microblaze used for DIFT computations).

5 Conclusion and perspectives
ARMHEx is the first work to implement DIFT on ARM hard-

core processors. Even though DIFT implementations on softcores
exist, they are not all portable to hardcore CPUs. This work pro-
poses to use CoreSight components to partially recover required
information for DIFT with negligible time overhead. ARMHEx
extensions can be implemented in parallel as it has a moderate
impact in terms of area as less than 22% of FPGA area is cur-
rently used. Implementation results show interesting perspectives
for ARMHEx in terms of reconfigurability (flexible security pol-
icy changes) and multicore runtime security.

References

[1] A. Birgisson, D. Hedin, and A. Sabelfeld. Boosting the Permis-
siveness of Dynamic Information-Flow Tracking by Testing, pages
55–72. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[2] M. Dalton et al. Raksha: A flexible information flow architecture
for software security. SIGARCH Comput. Archit. News, June 2007.

[3] L. Davi et al. Hafix: Hardware-assisted flow integrity extension.
In 2015 52nd ACM/EDAC/IEEE Design Automation Conference
(DAC), June 2015.

[4] D. Y. Deng et al. Flexible and efficient instruction-grained run-time
monitoring using on-chip reconfigurable fabric. MICRO ’43, 2010.

[5] I. Heo et al. Implementing an application-specific instruction-
set processor for system-level dynamic program analysis engines.
ACM Trans. Des. Autom. Electron. Syst., 20(4):53:1–53:32, Sept.
2015.

[6] H. Kannan et al. Decoupling dynamic information flow tracking
with a dedicated coprocessor. In DSN 09, pages 105–114, June
2009.

[7] L. C. Lam et al. A general dynamic information flow tracking
framework for security applications. 2006.

[8] J. Lee, I. Heo, Y. Lee, and Y. Paek. Efficient dynamic information
flow tracking on a processor with core debug interface. DAC ’15.
ACM.

[9] V. Nagarajan et al. Dynamic information flow tracking on multi-
cores. Workshop on Interaction between Compilers and Computer
Architectures, 2008.

[10] J. Newsome et al. Dynamic taint analysis for automatic detection,
analysis, and signature generation of exploits on commodity soft-
ware. 2005.

2


	Introduction
	Related work
	ARMHEx approach
	General Overview
	ARMHEx software requirements
	CoreSight components

	Implementation results
	Conclusion and perspectives

