
Monitoring information flows in heterogeneous SoCs with a dedicated coprocessor

Muhammad Abdul Wahab 1, Mounir Nasr Allah 2, Pascal Cotret 4

Guillaume Hiet 2, Vianney Lapôtre 3, Guy Gogniat 3

1 SCEE/IETR/CentraleSupélec - firstname.lastname@centralesupelec.fr
2 CIDRE/INRIA/CentraleSupélec - firstname.lastname@centralesupelec.fr

3 Lab-STICC - Université de Bretagne-Sud - firstname.lastname@univ-ubs.fr
4 Independent researcher - pascal.cotret@gmail.com

Abstract

Security is a major issue nowadays for the embedded systems
community. Untrustworthy authorities may use a wide range of
attacks in order to retrieve critical information. This paper intro-
duces ARMHEx, a practical solution targeting DIFT (Dynamic In-
formation Flow Tracking) on ARM-based SoCs (e.g. Xilinx Zynq).
ARMHEx takes profit of ARM CoreSight debug components and
static analysis to drastically reduce instrumentation time overhead
(up to 90% compared to existing works).

1 Introduction
During the last decade, several software security vulnerabilities

have been discovered. Access control or cryptography can be used
to limit access to confidential data or to enforce integrity. How-
ever, such techniques do not provide any guarantees once access
is granted or data decrypted. Monitoring applications at runtime
to check their behavior is a complementary solution. Among the
different existing approaches, IFT (Information Flow Tracking) is
an appealing solution that consists in tracking the dissemination of
data inside the system.

This work is based on an hybrid approach combining SIFT
(Static Information Flow Tracking) and DIFT (Dynamic Informa-
tion Flow Tracking) [7]: both dynamic and hybrid IFTs will be
cited as DIFT in this work. DIFT consists of performing three op-
erations:

1. Tag initialization: it consists in attaching tags to information
containers (e.g. file, variable, memory word, etc). Those tags
correspond to the security level or the type of data they con-
tain.

2. Tag propagation: tags need to be propagated from source
operands to destination operands to track information flows
resulting from the execution of each CPU instruction.

3. Tag Check: tags are checked with a security policy, at runtime
and on a regular basis, to ensure that critical information is not
handled by untrusted functions or entities.

2 Related works
In order to overcome high time overheads of software solu-

tions for DIFT (at least 300%), hardware mechanisms were imple-
mented. We can distinguish four main approaches:

1. Filtering hardware accelerator. Instead of computing tags
for each CPU instruction (as done in other approaches), this
approach proposes to filter monitored events (e.g. system
calls) before computing tags to lower DIFT time overhead.

2. In-core ([2]). This approach relies on a deeply revised pro-
cessor pipeline. Each stage of the pipeline is duplicated with a
hardware module in order to propagate tags all along the pro-
gram execution.

3. Offloading. In this case, DIFT operations are computed by
a second general purpose processor. The required informa-
tion for DIFT (i.e. PC register value, instruction encoding

and load/store memory addresses) is sent by the proces-
sor running the application.

4. Off-core ([5, 4]). This approach seems similar to the offload-
ing one. However, DIFT is performed on a dedicated unit in-
stead of a general purpose processor. ARMHEx is based on
this approach but differs in its implementation.

This work extends ideas presented in [1] and proposes a proof-
of-concept prototype and its implementation on Zynq SoC (Zed-
board) is detailed. It is shown that the area and power overhead of
proposed implementation is better than existing approaches.

3 ARMHEx approach
A DIFT implementation is efficient when required information

is obtained in the shortest possible time. ARMHEx coprocessor
requires at least three pieces of information to compute tags propa-
gation:

1. PC register value.
2. Instruction encoding.
3. load/store memory addresses.

PC register value and some memory addresses are partially re-
covered using CoreSight components. Missing information about
memory addresses and instruction encoding is obtained through
static analysis and instrumentation.

CoreSight components (Figure 1) are a set of IP blocks provid-
ing hardware-assisted software tracing. These components are used
for debug and profiling purposes. For instance, they can be used to
find software bugs and errors or even for CPU profiling (number of
cache misses/hits and so on).

Program Trace
Macrocell (PTM)

Program Trace
Macrocell (PTM)C

P
U

 0 Detector

Packetizer

Embedded Cross 
Trigger (ECT)

Trace/Packet 
Output (TPIU)

C
P

U
 1

MIO/EMIO

Funnel

Replicator

1

2

3

4

Instrumentation Trace Macrocell (ITM)

Trigger register
Write Packet 

Registers

Embedded Trace 
Buffer (ETB)

Read Packet 
Registers

Fabric Trace 
Monitor (FTM)

PL Fabric

Detector

Packetizer

CPUs

Figure 1. CoreSight components in Xilinx Zynq

ARMHEx uses these components to retrieve information on some
instructions committed by the CPU at runtime. In Figure 2, the PFT
decoder 1 is a state machine that decodes trace packets received
from CoreSight components. As the trace is sent at 250 MHz by the
TPIU, it needs to be decoded at the same frequency to avoid unnec-
essary storage overhead. The PTM sends different types of packets
to analyze the code being executed on the CPU. Each type of packet
has its own packet FSM (Finite State Machine) and a global state



DIFT-related data

ARM 
Cortex-A9 

CPU 0

CoreSight
 components

PFT Decoder AXI 
BRAM

ARMHEx 
Coprocessor

trace

Processing System (PS) Programmable Logic (ARMHEx)
EMIO

interface

TRF

Config

control

interrupt

AXI GP

32 MB

DDR

Memory
(used by Linux OS) Tag dependencies

Tag 
space

Heap and Stack 
(coprocessor)

b a

2

3

1

Buffer
4

AXI GP

Figure 2. Internal architecture of an ARMHEx sys-
tem

machine controls packet FSMs. Finally, decoded traces are stored
in AXI Block RAM.

The TRF (Tag Register File 2 ) is a register file that stores
tags for each of 16 ARM CPU registers and 32 NEON registers.
The Config IP 3 is an AXI slave IP containing a set of regis-
ters that provides a communication channel between the CPU and
the ARMHEx coprocessor: it is used to configure tag propagation
rules, send the initial value of SP and for debug purposes. Buffer
4 is a FIFO (AXI Slave write-only interface and a custom in-

terface for read channel) that contains instrumented memory ad-
dresses.

4 Implementation results
Implementations were done with Vivado 2016.4 tools on a Xil-

inx Zedboard including a Z-7020 SoC (dual-core Cortex-A9 run-
ning at 667MHz and an Artix-7 FPGA). The ARMHEx coprocessor
is implemented in a Microblaze softcore for this proof-of-concept.

4.1 Instrumentation overhead
The instrumentation time overhead is proportional to the num-

ber of instrumented instructions. The average time overhead for
strategy #1 is 24.6% while it reaches 53.7% for related work instru-
mentation strategy. The average time overhead for strategy #2 is
5.37% which is better than the overhead of 60% reported by Heo et
al. [4].

4.2 Area
Area results are shown in Table 1. Most of the FPGA area is

filled by the AXI interconnect (5.87%), Config IP (5.20%) and the
Microblaze softcore (4.62%). Other IPs occupy less than 1% of the
FPGA area in terms of slices. In this work, ARMHEx targets a sin-
gle Cortex-A9 core. Implementation results show that a Cortex-A9
dual-core, such as the one included in the Zynq Z-7020, could be
easily protected. In the current configuration, the ARMHEx infras-
tructure could cover up to 5 Cortex-A9 cores simultaneously.

4.3 Comparison with previous works
Table 2 shows a performance comparison of ARMHEx with pre-

vious off-core approaches. Unlike previous works, ARMHEx is
based on an ARM hardcore processor: it opens interesting perspec-
tives as this work is easily portable to existing embedded systems.
Approaches proposed by Heo [4] and Lee [6] are not portable on
Zynq SoC due to CoreSight PTM component. Furthermore, the
time cost for communication between a CPU and the coprocessor
is 5.4% in this work compared to 60% in [4]. In terms of area,
ARMHEx has the best coprocessor/processor ratio.

Table 1. Area results of ARMHEx on Xilinx Zynq Z-
7020

IP Name Slice LUTs Slice Registers Slice (in %) BRAM Tile
Microblaze 1578 1407 614 (4.62) 6
MDM 102 110 40 (0.30) 0
Local memory 14 4 11 (0.08) 32
PFT Decoder 105 211 60 (0.45) 0
AXI TRF 53 105 24 (0.18) 1
Config 914 2141 692 (5.20) 0
AXI Interconnect 1788 2436 781 (5.87) 0
BRAM 2 0 1 (0.01) 2
BRAM Controller 157 168 59 (0.44) 0
Miscellaneous 641 586 171 (1.29) 0

Total Design 5354 7168 2453 41
(10.06%) (6.74%) (18.44%) (29.29%)

Total Available 53200 106400 13300 140

Table 2. Performance comparison with related work

Approaches Kannan [5] Deng [3] Heo [4] ARMHEx
Hardcore portability No No Yes Yes
Main CPU Softcore Softcore Softcore Hardcore
Communication overhead N/A N/A 60% 5.4%
Area overhead 6.4% 14.8% 14.47% 0.47%
Area (Gate Counts) N/A N/A 256177 128496
Power overhead N/A 6.3% 24% 16%
Max frequency N/A 256 MHz N/A 250 MHz

5 Conclusion and perspectives
This work is the first one to implement DIFT on ARM hardcore

processors. Even though DIFT implementations on softcores exist,
they are not all portable to hardcore CPUs. It is shown that by using
our approach, only 6% of instructions need to be instrumented in an
application compared to 60% instrumented instructions in related
works. Implementation results show interesting perspectives for
ARMHEx in terms of multicore runtime security. ARMHEx can
be implemented in parallel as it has a moderate impact in terms of
area (less than 20% of FPGA area is currently used).

References

[1] M. Abdul Wahab, P. Cotret, M. Nasr Allah, G. Hiet, V. Lapotre, and
G. Gogniat. Towards a hardware-assisted information flow tracking
ecosystem for ARM processors. In FPL 2016, Lausanne, Switzerland,
Aug. 2016.

[2] M. Dalton, H. Kannan, and C. Kozyrakis. Raksha: A flexible infor-
mation flow architecture for software security. SIGARCH Comput.
Archit. News, 35(2):482–493, June 2007.

[3] D. Y. Deng, D. Lo, G. Malysa, S. Schneider, and G. E. Suh. Flex-
ible and efficient instruction-grained run-time monitoring using on-
chip reconfigurable fabric. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture, MICRO
’43, 2010.

[4] I. Heo, M. Kim, Y. Lee, C. Choi, J. Lee, B. B. Kang, and Y. Paek.
Implementing an application-specific instruction-set processor for
system-level dynamic program analysis engines. ACM Trans. Des.
Autom. Electron. Syst., 20(4):53:1–53:32, Sept. 2015.

[5] H. Kannan, M. Dalton, and C. Kozyrakis. Decoupling dynamic infor-
mation flow tracking with a dedicated coprocessor. In 2009 IEEE/IFIP
International Conference on Dependable Systems Networks, June
2009.

[6] J. Lee, I. Heo, Y. Lee, and Y. Paek. Efficient security monitoring with
the core debug interface in an embedded processor. ACM Trans. Des.
Autom. Electron. Syst., 22(1):8:1–8:29, May 2016.

[7] S. Moore and S. Chong. Static analysis for efficient hybrid
information-flow control. In 2011 IEEE 24th Computer Security Foun-
dations Symposium, pages 146–160, June 2011.


