
Monitoring program execution 
(and more!) on ARM processors

Pascal Cotret
pascal.cotret@gmail.com / @Pascal_r2

N7, March 9, 2018



Hello!
▪ Embedded software security engineer

▪ Researcher in my spare-time

(also former associate professor)

HardBlare project (3 labs, 2 PhDs…)



Threat model

Playing with such attacks on ARM:

https://billy-ellis.github.io (@bellis1000)

https://www.root-me.org/?page=recherche&lang=en&recherche=ARM

https://azeria-labs.com/ (@Fox0x01)

https://billy-ellis.github.io/
https://www.root-me.org/?page=recherche&lang=en&recherche=ARM
https://azeria-labs.com/


DIFT = Dynamic Information Flow Tracking

▪ DIFT => Detection of software attacks
▫ Buffer overflow, Return Oriented Programming, etc.

▪ Security purposes => Integrity and Confidentiality

▪ Principle:
▫ Tags attached to containers + relationship
▫ At runtime, propagate tags
▫ Detecting any violation at run-time asap



DIFT = Dynamic Information Flow Tracking



DIFT = Dynamic Information Flow Tracking



DIFT = Dynamic Information Flow Tracking



DIFT = Dynamic Information Flow Tracking



Different levels for DIFT

▪ Operating system:
Files / Executables

▪ Language level:
Variables / Functions

▪ Processor level:
Address, registers / Instructions



DIFT – Memory corruption detection



DIFT – Memory corruption detection



DIFT – Memory corruption detection



DIFT – Memory corruption detection



DIFT – Memory corruption detection



Different levels for DIFT

▪ Tag initialization: data are tagged with theirs "security level"

password="abcd" Tag(password)=secret

▪ Tag propagation: any new data derived from the tagged data is also tagged

log=err+password Tag(log)=Tag(err)+Tag(password)

▪ Tag check: raise an exception if an information flow doesn’t respect a security
policy

write(log,network) Policy: (Tag(log)==public)

+ =



Different levels for DIFT

▪ Application level
▫ Java / Android, Javascript, C

▪ OS level
▫ kBlare (Linux kernel w/ software IFT)

▪ Low level
▫ Deeping into processor architecture maybe?



Different levels for DIFT

▪ Application level
▫ Java / Android, Javascript, C

▪ OS level
▫ kBlare (Linux kernel w/ software IFT)

▪ Low level
▫ Deeping into processor architecture maybe?

Buying an ARM license => no way. Or…



FPGA => Programmable electronics

Source: EEVBlog #496 – What is an FPGA? (Youtube)



Different levels for DIFT

In-core DIFT Offloading



Different levels for DIFT

Off-core DIFT



Related works

Advantages Disadvantages

Software
Flexible security

policies
Overhead

(300% at least…)

In-core DIFT Low overhead (10%) Invasive modifications

Dedicated CPU Low overhead (10%) Wasting resources

Dedicated coprocessor
Low overhead (10%)

CPU not modified
CPU/coprocessor
communication



ARMHEx approach

▪ Limiting the impact of software instrumentation

▪ Security of the coprocessor

▪ First work on ARM-based SoCs

▪ Additional challenges



ARMHEx approach

▪ Limiting the impact of software instrumentation

▪ Security of the coprocessor

▪ First work on ARM-based SoCs

▪ Additional challenges



What can I do with my processor?



What can I do with my processor?

▪ CoreSight: debug components

▪ Available in most of Cortex-A + 
Cortex-M3 (for ARM)

▪ Can export stuff



CoreSight components



CoreSight components – Where should I export my metadata?



CoreSight PTM features

Features:

▪ Trace filter

▪ Branch Broadcast

▪ Timestamping

▪ Etc, etc.



What does a trace look like?



DIFT toolchain

Our case:

▪ We want to store tags and initialize tags from the operating system:
▫ Modified kBlare (based on a Linux Kernel 4.9)

▪ We don’t want to loose information (no over-approximation):
▫ Dynamic approach: Instrumentation + PTM traces

▪ Extract some informations about the data flow (for tag propagation):
▫ Static Analysis: Generating annotations.



Generating annotations

(status on late February)

▪ 200 instructions done:
▫ LLVM meta-instructions
▫ « Basic » stuff: add, compare, load/store, 

etc.

▪ TODO: 200 instructions left (at least…)
▫ Parallel additions/substractions features
▫ Advanced SIMD instructions 



DIFT toolchain

Source: Bootlin (aka Free Electrons)

▪ Templates/tools/methods

▪ Custom embedded Linux

▪ HardBlare recipes added



Coprocessor – Quick hints

▪ DIFT metadata protection
▫ TrustZone + secure

world

▪ Main challenge: speed!



Some latency results



Comparison w/ existing works



Perspectives

Take away:

▪ CoreSight PTM allows to obtain runtime information (Program Flow)

▪ Non-intrusive tracing => Negligible performance overhead

RaspberryPi PoC (hopefully March)

Full PoC later this year (SoC files + Yocto)

Intel / ST? (study)

Multicore multi-thread IFT

Full-speed IFT



Monitoring program execution 
(and more!) on ARM processors

Pascal Cotret
pascal.cotret@gmail.com / @Pascal_r2

Many thanks to Muhammad, Mounir, Guy,
Guillaume, Vianney and Arnab


