Porting a JIT Compiler to RISC-V:
Challenges and Opportunities

Quentin Ducasse ' Guillermo Polito > Pablo Tesone 2

Pascal Cotret ! Loic Lagadec ?

September 15, 2022

(1) ENSTA Bretagne - LabSTICC
(2) INRIA Lille - RMoD

Outline ENSTA

BRETAGNE

1. Background

2. RISC-V Implementation Details

3. Cogit Internals

4. Clashes

5. Tooling and Port to RISC-V

6. Conclusion and Future Works

Introduction

ENSTA

BRETAGNE

September 06,2022 |

NASA Selects SiFive and
Makes RISC-V the Go-to
Ecosystem for Future Space
Missions

Learn More

Introduction ENSTA

BRETAGNE

September 06,2022 |

NASA Selects SiFive and
Makes RISC-V the Go-to
Ecosystem for Future Space
Missions

Learn More

Our main objective with RISC-V is to send-Phare-to-the-meon:

e Experiment with dedicated VM custom instructions

e Dedicate hardware to security or media processing

Picture

Hardware-based security enforcement
of JITed language runtimes...:

¢ Isolate parts of the VM

e Protect JIT Compilation and JIT
code

e Enforce strong properties through
hardware

. on RISC-V!

Application
JITGuard
FememmmeSoeeoeeoooeo '
1 Randomized | |
! JITGuard- |+
Native | Region H
,ﬁs“"“ H :
Static Ak Stack |
Godol ! JiT !
h Code H
1 '
Garbage
Collector el | '
I il
T [LS e
| Bytecode H»| Compiler | ﬂTrampolmes; H
I |

Legend:

| Protection | | Code | | Data | { Double Mapping ;

extracted from JITGuard by
Frassetto et al.

Background

The Pharo language is:
e Smalltalk-inspired
e Purely object-oriented
e Dynamically-typed

e Control flow comes as
message passing

exampleWithNumber: x

<aMethodAnnotation>

[y |

true & false not & (nil isNil)

ifFalse: [self halt].

y := self size + super size

#($a #a 'a' 1 1.0)

do: [:each | Transcript
show: (each class name);
show: (each printString);
show: ' '1].
X<y

- VM and Images

The runtime environment is the Pharo VM, it is composed of:

e A threaded bytecode interpreter
e A linear non-optimising JIT compiler

e A generational scavenger garbage collector

Architecture oS Pharo VM Pharo image

x86-64 Windows Bytecode Interpreter

ARMvV7/8 Linux JIT Compiler

(RISC-V) MacOS Garbage Collector

Pharo - VM Compilation

The VM is compiled by:

e Writing the VM in a restricted Pharo language
e Transpiling the restricted VM to C (Slang)
e Compiling it with a C compiler along with routines and plugins

VM written in a
restricted Pharo

JIT Compiler

Bytecode Interpreter

Garbage Collector

Transpiled to C
using Slang

Production
VM in C

Routines

Plugins

Compiled using
Y GCC or Clang

Pharo environment

Executable

RISC-V - Presentation

RISC-V was born in Berkeley around 2010.

It is the most recent generation of RISC processors.

The ISA is:

e open-source - multiple cores and implementations are available
e extensible - opcode space available for dedicated hardware

e modular - wide range of application from loT to HPC

RISC-V - Main Extensions

Name Description State Instructions
RV32l Base Integer Instruction Set - 32 bits Frozen 49
RV641 Base Integer Instruction Set - 64 bits Frozen 14

M Integer Multiplication and Division Frozen 8

A Atomic Instructions Frozen 11

F Single-Precision Floating-Point Frozen 25

D Double-Precision Floating-Point Frozen 25

G All of the above - -

C Compressed Instructions Frozen 36

J Dynamically Translated Languages Open undefined

T Packed-SIMD Instructions Open undefined

N User-Level Interrupts Open 3

z* Cryptographic operations Open undefined

Table 1: RISC-V ISA and extensions

RISC-V - Open-source Pro

RISC-V cores come in different sizes and capacities from loT to HPC:

Rocket BOOM
7-stage

F-?ngzgeé Out-of-Order
RV64GC

4-stage
RV32IMFC
2-stage
RV32IMCB 6-stage
RV64IMAC
Ibex CV32E40P CVAG6 HERO

Repositories in references!

RISC-V Implementation Details

RISC-V Features - Simpler Instructions ENSTA

BRETAGNE

RISC-V honors the Reduced part of the instruction set, choosing
simplicity as a main design focus:

e One data addressing mode (adding a sign-extended 12-bit
immediates to a register)
e No shifts in arithmetic-logic operations

e Only general purpose registers (with the addition of PC and
hardwired 0)

e No complex call/return or stack instructions

10

RISC-V Features - Simpler Instructions ENSTA

BRETAGNE

RISC-V honors the Reduced part of the instruction set, choosing
simplicity as a main design focus:

e One data addressing mode (adding a sign-extended 12-bit
immediates to a register)
e No shifts in arithmetic-logic operations

e Only general purpose registers (with the addition of PC and
hardwired 0)

e No complex call/return or stack instructions

Rationale

Common operations should be the norm, leaving complex instructions
at the charge of the developer. Simplification of the datapath!

10

RISC-V Features - Simpler Instructions

Impact

Redefinition of needed rare instructions. Increase of the number of

instructions.

Rotate left with shift amount in register

sll rd, rsl, rshamt #
sub temp, zero, rshamt #
srl temp, rsl, temp #
or rd, rd, temp #

Software overflow check

add to, tl1, t2 #
slti t3, t2, 0 #
slt t4, to, tl #
bne t3, t4, overflow #

x[rsl] << rshamt

get the negative count
x[rsl] >> (xlen - rshamt)
or between (1) and (2)

genuine addition

t3 = t2's sign

t4 = sum smaller than t1?
if t3 != t4, overflow!

11

RISC-V Features - Simpler Instructions

Pseudo-instruction 1i, available in RISC-V assembly is defined as:

|| rd, immediate x[rd] = immediate
Load Immediate. Pseudoinstruction, RV32I and RV641.

Loads a constant into x[rd], using as few instructions as possible. For RV32I, it expands to
lui and/or addi; for RV64L, it’s as long as lui, addi, slli, addi, slli, addi, slli, addi.

12

RISC-V Features - Simpler Instructions

Pseudo-instruction 1i, available in RISC-V assembly is defined as:

|| rd, immediate x[rd] = immediate
Load Immediate. Pseudoinstruction, RV32I and RV641.

Loads a constant into x[rd], using as few instructions as possible. For RV32I, it expands to
lui and/or addi; for RV64L, it’s as long as lui, addi, slli, addi, slli, addi, slli, addi.

e LLVM defines a complex recursive function to handle all immediate
values in the fewest instructions possible.

e GCC runs different encoding methods, attributes them a cost and
returns the best fitting choice.

12

ENSTA

RISC-V Features - Sign-extension o e

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-
diates are always sign-extended [...]. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed

sign-extension circuitry

13

RISC-V Features - Sign-extension ENSTA

BRETAGNE

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-
diates are always sign-extended [...]. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed
sign-extension circuitry

Rationale

A single convention makes manipulating immediates more reliable!
Architecture has a dedicated encoding/decoding circuitry.

13

RISC-V Features - Sign-extension ENSTA

BRETAGNE

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-
diates are always sign-extended [...]. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed
sign-extension circuitry

Rationale
A single convention makes manipulating immediates more reliable!
Architecture has a dedicated encoding/decoding circuitry.

Large immediates split through multiple instructions will require
bit manipulation and a check at the smallest unit size.

13

RISC-V Features - Sign-extension

11 t0, 0x3800800800800800

lui t0, 14337 # 0x3801
addiw t0, t0, -2047 # OX7FF
slli to, to, 12 #

addi t0, t0, -2047 # Ox7FF
slli to, to, 12 #

addi t0, t0, -2047 # OX7FF
slli to, to, 12 #

addi t0, t0, -2048 # 0x800

‘ | lui | ‘ addi | | addi | ‘ addi | | addi
A A A A

should NOT be sign-extended

14

RISC-V Features - Sign-extension

11 t0, 0x3800800800800800

lut t0, 14337 # 0x3801
addiw t0, t0, -2047 # OX7FF
sl t0, t0, 12 #
addi t0, t0, -2047 # Ox7FF
s1li to, tO, 12 #
addi t0, t0, -2047 # OX7FF
sl t0, t0, 12 #
addi t0, tO, -2048 # 0x800
‘ | lui | ‘ addi | | addi | ‘ addi | | addi

should NOT be sign-extended

Note: Also applies to the call pseudo-instruction - auipc/jalr

14

RISC-V Features - Condition Codes

Regarding conditional branches, RISC-V rejects:

¢ Condition codes of ARM/x86
e Delayed branch of MIPS

e Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the
result: beq, bne, bge and blt.

15

RISC-V Features - Condition Codes ENSTA

BRETAGNE

Regarding conditional branches, RISC-V rejects:

¢ Condition codes of ARM/x86
e Delayed branch of MIPS

e Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the
result: beq, bne, bge and blt.

Rationale
Condition codes added extra state that is implicitly set by most
instructions. It complicates out-of-order execution processor design.

15

RISC-V Features - Condition Codes ENSTA

BRETAGNE

Regarding conditional branches, RISC-V rejects:

¢ Condition codes of ARM/x86
e Delayed branch of MIPS

e Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the
result: beq, bne, bge and blt.

Rationale

Condition codes added extra state that is implicitly set by most
instructions. It complicates out-of-order execution processor design.

Impact

Architectures depending on x86 branching will have to adapt.

15

RISC-V Features - Overall

RISC-V presents the results of more than 25 years of RISC architecture
development and refinement to emphasize design choices:

Simplicity - common path is the default path

Performance - no implicit state

Architecture/Implementation Isolation - no delayed branch/load

Room for Growth - generous available opcode space (and hints)

16

Cogit Internals

Pharo - Cogit

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses
registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

Compilation Steps

Bytecode Scanning

Bytecodes —>»] f > Machine

Code

Metadata Extraction

Step Objectives

17

Pharo - Cogit ENSTA

BRETAGNE

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses
registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

Compilation Steps

Bytecode Scanning > Bytecode Parsing

T T

Bytecodes —>»] f ! > Machine

Code

Generate IR

Metadata Extraction in CogRTL

Step Objectives

18

Pharo - Cogit ENSTA

BRETAGNE

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses
registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

Compilation Steps

Bytecode Scanning > Bytecode Parsing > Code Generation

i T T .
Bytecodes —>»] f ! ! > M(a:‘c)r&ge

Generate IR Concretize IR

Metadata Extraction in CogRTL in Machine Code

Step Objectives

19

Pharo - Cogit ENSTA

BRETAGNE

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses
registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

ISA agnostic Compilation Steps

Bytecode Scanning > Bytecode Parsing H»| Code Generation

i T T .
Bytecodes —>»] f ! ! > M(a:‘c)r&ge

Generate IR Concretize IR

Metadata Extraction in CogRTL in Machine Code

Step Objectives

20

Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

Call, CallFull, CallRr,

MoveRR, MoveMwrR, MoveX32rR,

JumpZero, JumpNonNegative,

PopR, PushR,

AndCgR, 0OrCgR, TstCgR,

AddRR, CmpRR, MulRR,

LogicalShiftRightRR, ArithmeticShiftLeftRR,

21

Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

Call, CallFull, CallRr,

MoveRR, MoveMwrR, MoveX32rR,

JumpZero, JumpNonNegative,

PopR, PushR,

AndCgR, OrCqR, TstCqR,

AddRR, CmpRR, MulRR,

LogicalShiftRightRR, ArithmeticShiftLeftRR,

e Condition codes setter Tst or Cmp

22

Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

Call, CallFull, CallRr,

MoveRR, MoveMwrR, MoveX32rR,

JumpZero, JumpNonNegative,

PopR, PushR,

AndCgR, OrCqR, TstCqR,

AddRR, CmpRR, MulRR,

LogicalShiftRightRR, ArithmeticShiftLeftRR,

e Condition codes setter Tst or Cmp

e Conditional Jumps

23

Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

Call, CallFull, CallRr,

MoveRR, MoveMwrR, MoveX32rR,

JumpZero, JumpNonNegative,

PopR, PushR,

AndCgR, 0OrCgR, TstCqR,

AddRR, CmpRR, MulRR,

LogicalShiftRightRR, ArithmeticShiftLeftRR,

e Condition codes setter Tst or Cmp
e Conditional Jumps

e Different addressing modes

24

Cogit Internals - IR ENSTA

BRETAGNE

Rationale
Decisions on CogRTL design date from when x86 was the main
architecture.

Applications to ARMv7 or ARMv8 remained feasible as both provided
x86-compatible capabilities such as:

e Branching on flags
e Many addressing modes

e Bit manipulation operations

25

Cogit Internals - IR ENSTA

BRETAGNE

Rationale
Decisions on CogRTL design date from when x86 was the main
architecture.

Applications to ARMv7 or ARMv8 remained feasible as both provided
x86-compatible capabilities such as:

e Branching on flags
e Many addressing modes

e Bit manipulation operations

Unfortunately, it is a different story with RISC-V...

25

Clashes

Literals and Inline Caching ENSTA

BRETAGNE

Cogit needs to patch generated machine codes whether for (1) garbage
collection or (2) inline caches (mono-, poly- and megamorphic).

26

Literals and Inline Caching ENSTA

BRETAGNE

Cogit needs to patch generated machine codes whether for (1) garbage
collection or (2) inline caches (mono-, poly- and megamorphic).

Impact

Patching literals requires to leave room for the biggest immediate value.

26

Literals and Inline Caching

BRETA

Cogit needs to patch generated machine codes whether for (1) garbage
collection or (2) inline caches (mono-, poly- and megamorphic).

Patching literals requires to leave room for the biggest immediate value.

Inline literals Out-of-line literals
Generated Generated
Machine Code Machine Code
Literal 1 Reference to Literal 1
Reference to Literal 2 Literals
Literal 2 R Manager
Literal 1
Literal 2

26

Intermediate Representation Mismatch ENSTA

BRETAGNE

The close link between CogRTL and x86/ARMv8 expects a I-1 mapping:

CogRTL instructions
cogit CmpR: ClassReg R: TempReg
cogit JumpNonZero: (Label 2)

ARMv8 output
cmp rl, r22
b.ne 48

RISC-V wanted output
bne rl, r22, 48

27

Intermediate Representation Mismatch ENSTA

BRETAGNE

The close link between CogRTL and x86/ARMv8 expects a I-1 mapping:

CogRTL instructions
cogit CmpR: ClassReg R: TempReg
cogit JumpNonZero: (Label 2)

ARMv8 output
cmp rl, r22
b.ne 48

RISC-V wanted output
bne rl, r22, 48

Impact

Mismatch between RISC-V and CogRTL when mapping IR and

machine code.
27

Reintroducing Condition Codes ENSTA

BRETAGNE

One way to patch the issue is to reintroduce condition codes:

cogit CmpR: ArgOReg R: ReceilverReg

sub t3, s8, a3 seqz t5, t5
slti t1, a3, 1 sltu t6, s8, t3
st t2, t3, s8 slti t4, t3, 0

xor t5, t1, t2 seqz t3, t3

28

Reintroducing Condition Codes ENSTA

BRETAGNE

One way to patch the issue is to reintroduce condition codes:

cogit CmpR: ArgOReg R: ReceilverReg

sub t3, s8, a3 seqz t5, t5
slti t1, a3, 1 sltu t6, s8, t3
st t2, t3, s8 slti t4, t3, 0
xor t5, t1, t2 seqz t3, t3

Impact

Reintroduction of a motivated ban from RISC-V. Increase of the
number of instructions.

28

Patching the IR to resolve the 1I-1 mapping into a 2-1:

newBranchOpcode := nextInstruction opcode caseOf: {
[JumpZero] -> [BrEqualRR].
[JumpNonZero] -> [BrNotEqualRR].
.1

opcode caseOf: {

[CmpRR] -> [newBranchLeft := operands at: 1.
newBranchRight := operands at: 0.
opcode := Label].

[CmpCgR] -> [newBranchLeft := operands at: 1.
newBranchRight := TempReg.
opcode := MoveCgR.
operands at: 1 put: TempReg].

L

CmpRR opl op2 / JumpZero op3 becomes BrEqualRR opl op2 op3
29

Reworking the IR ENSTA

BRETAGNE

Is this the time to rework the IR? We could get:

e Higher level abstraction
o Complex optimizations

e Data/control flow analysis

This could take the form of V8’s sea of nodes or LuaJIT SSA!

30

Reworking the IR ENSTA

BRETAGNE

Is this the time to rework the IR? We could get:

e Higher level abstraction
o Complex optimizations

e Data/control flow analysis

This could take the form of V8’s sea of nodes or LuaJIT SSA!
Impact

Rewriting the IR is a consequent workload but should be beneficial
long-term!

30

Tooling and Port to RISC-V

Testing Ecosystem - Test Harness

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn

Pharo VM

1
\

A
=)
N

Heap

JIT «|Instruction
Code | 7" Simulator

31

Testing Ecosystem - Test Harness BER'EIT%IQ

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn
2. Simulating the whole VM in Pharo, CogVMSimulator

N
o

\

o~

Pharo VM !

i
!
LT «|Instruction
e i Code | 7" Simulator
1
1
1

1
\

A
=)
N

R R BB

32

Testing Ecosystem - Test Harness ENSTA

BRETAGNE

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn
2. Simulating the whole VM in Pharo, CogVMSimulator
3. Running on the architecture:

e Fedora Rawhide in QEMU

e BeagleV as the hardcore RISC-V SoC

e Rocket as the softcore RISC-V CPU

G
| €)) ——
i | Pharo VM =~
1 f (1)
| \
i QEMU ! i
| ! — |
! Hardcore [« Heap I e »|Instruction] i
i ! Code] Simulator |
|| softcore | | ! i
| |
| ’ o
| H |
|]

33

Tools - Machine Code Debugger

ENSTA

BRETAGNE

x-o

Address

Name
ceCaptureCStackPointers
ceEnterCogCodePopRece.
cecallcogCodepopReceiv
ceCallCogCodePopReceiv
cePrimRetumEnterCogCo
cePrimRetumEnterCogCo
ceCallCogCodepopReceiv
cecallCogCodepopReceiv
cecallPiCoArgs
ceCallPICIATgs
ceCallPiC2Args
sendoargsTrampoline
sendlargsTrampoline
sendzargsTrampoline
send3argsTrampoline
cecPICHissTrampoline
cePiCAbortTrampoline.
ceMethodabortTrampolin
ceStoreCheckTrampoline.
cestoreTrampoline
methodZoneBase

Disassemble Trampoline

m ClassReg TempReg
JumpNonze (PushR 1 F1

tabel 3 37
PushR ReceiverRes
PushR ArgOR:

g
MoveRAw FPReg 16rTFFFFFFF
MoveRAw SPReg 1GrTFFFEFEE
MoveRAw LinkReg 16rTFFFFFEF

MoveAbR 16rTFFFFFFF SendNuman

MoveRR SendNumr|ClassReg
Classheg.

MoveRAb ClassReg 16rTFFFFFEF

MoveltwiR 1620/32 ClassReg TempReg

Movecw

MoveRXwrR TempReg SendNumar ClassReg
MoveCqR 0

q mpReg
MoveRAw TempReg 16rTFFFFFEF

Step

Name OpL op2 op3
MovecqR 0 ReceiverRes:
PushR LinkReg
call 161000835/
lignmenthcs
Label 1 a
ndcarr 7 ReceiverResiTempReg.
JumpNonZe (Label 237/
Movelwr 0 ReceiverResiTempReg.
NACQR 16r3FFFFF/a TempReg.
Nop
Nop
Label 2

1611003FC

Jumpto

VM Debugger
Asu Bytes
Subits, 56,7 163316 xa
stitlsT,1 A1613 16
St2,6,% H16B316 6

itd, 53,0 #1693 161 x10
seqzi3,3 A16r13 16 a1
beqz15,-116 #16E3"161 | x12
addisp,sp, BH16r13"161 | x13
sdss,0fp) H{16023"16 | x14
addisp,sp, B#{16r13"161 | x15
sdas,0fsp) #162316 16
sds0, T6(s108 16023 161 | a7
sdsp, 384(SICH1623" 161 | 18
sdra, 3601041623 161 | x15
auipctd,0 H1697"161 | 220
1610,368(t0) #{16:63 161 21
1sp,000) #1636t | 22
aipctd,0 AIEST I 23
1610,364(10) #[16:63"161 | 28
0010 HI6316E x2S
1bu 5, 304(s1#{16183 161
misTse #1693 161
addits,s7,1 #{16r13"16 | 08
it 1,0 A1613 16 20
SHRB1 A6 16 0
rorts, R #1633 16 3L
sltut6, 1,57 416183 16

stite, 3,0 #160316 L
msnE A1603 e R
@Bt A1603 16, B

Disassemble at PC

A Name Machine Alias Smaltalk Alss

il

varbase

sign
overflow
cany

Value 4 Pointer Address.
fowss

5 16r143€F8s
260" 16n143€F%0
a6 160143878
160 1601436720
UG SP 16rI43EFAS
260 161143780
“L6rF00E 16r1a3€FB8
168000 16n1436FCO
‘168000 160143FCS
168000 161143EFD0
168000 16r143EFD8
U6rB00C | PP 16rI43EFED
168000 16n143€FEs
168000 1601438650
160" 1601438675
160 1611437000
260 161437008
260" 160143010
60 16n143018
1611000 160143020
16r1s" 1601437028
62 1601437030
A6TFFE 161437038
160" 16143040
ey 161437048
160" 16n143¢050
160" 1601437055
160 161437060
260 161437068
2610 1601436070
260"

0,
setspio

161238000
160
16110001
161108088
16r1249388

16rAABBCCDD
161238000

1611080cBS
161238000

Refresh Stack

34

Tools - Instruction Simulator

The rich simulation environment coupled with the various hooks
Unicorn provide makes it very flexible:

®

UC_MEMORY_ERROR

Pharo Simulation

v Environment

w
T v
%E I 4<1>‘Instruction
oo T simulator
E é‘ Heap Code Slm\:kato
[

=

®

Simulated Trampolines —

35

Tools - Instruction Simulator ENSTA

BRETAGNE

The rich simulation environment coupled with the various hooks
Unicorn provide makes it very flexible:

® ®

UC_MEMORY_ERROR

UC_UNKNOWN_INSTRUCTION_ERROR
aro Simulation aro Simulation
Ph Simulati Ph Simulati
Environment Environment
Y Y
w n
T T C
%E T 4<1>‘Instruction % .g T Cl «|Instruction
=3 | 7| Simulator S < | 7| Simulator
22 AT Code 22 LRI Code
£ E A E & A
@ 'g nc

Simulated Trampolines — Simulated Instructions

36

Port to RISC-V ENSTA

BRETAGNE

As for now:

e Cogit is compliant with unit tests (1)!

e Rocket has been extended to support custom instructions!

e We still need to work our way through simulation (2) and
hardware execution (3)

However, regarding the toolchain:

e Every item remains in early/stable-ish development
e ISA being open-source also means various implementations

e Having access to reliable hardware is not easy

37

Conclusion and Future Works

ENSTA

Conclusion and Future Works o e

Takeaways:

e RISC-V is an open-source, modular ISA with bold design decisions

e Are clashes with CogRTL significant enough to suggest a
rewriting?

e Testing and tooling help dealing with issues at high level

38

ENSTA

Conclusion and Future Works o e

Takeaways:

e RISC-V is an open-source, modular ISA with bold design decisions

e Are clashes with CogRTL significant enough to suggest a
rewriting?

e Testing and tooling help dealing with issues at high level

Future works:

e What dedicated instruction would the VM benefit from?
e How to secure the VM using RISC-V?

e How to use a dedicated co-processor along the VM?

38

ENSTA

Conclusion and Future Works o e

Takeaways:

e RISC-V is an open-source, modular ISA with bold design decisions

e Are clashes with CogRTL significant enough to suggest a
rewriting?

e Testing and tooling help dealing with issues at high level

Future works:

e What dedicated instruction would the VM benefit from?
e How to secure the VM using RISC-V?

e How to use a dedicated co-processor along the VM?

Thank you!

Contact: quentin.ducasse@ensta-bretagne.org

38

ENSTA

References i BRETAGNE

B
B

Boom organization.
https://github.com/riscv-boom.

Cv32 chip.
https://github.com/openhwgroup/cv32e40p.

Cvab chip.
https://github.com/openhwgroup/cvaé.

Ibex chip.
https://github.com/lowRISC/ibex.

The RISC-V instruction set manual - volume I: Unprivileged ISA.
Document version 20191213.
https://github.com/riscv/riscv-isa-manual/releases/
download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

39

https://github.com/riscv-boom
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cva6
https://github.com/lowRISC/ibex
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf

ENSTA

References ii BRETAGNE

[Rocket chip generator.
https://github.com/chipsalliance/rocket-chip.

@ D. Patterson and A. Waterman.
The RISC-V Reader: An Open Architecture Atlas.
Technical report, 2015.

40

https://github.com/chipsalliance/rocket-chip

	Background
	RISC-V Implementation Details
	Cogit Internals
	Clashes
	Tooling and Port to RISC-V
	Conclusion and Future Works

