
Porting a JIT Compiler to RISC-V:

Challenges and Opportunities

Quentin Ducasse 1 Guillermo Polito 2 Pablo Tesone 2

Pascal Cotret 1 Löıc Lagadec 1

September 15, 2022

(1) ENSTA Bretagne - LabSTICC

(2) INRIA Lille - RMoD



Outline

1. Background

2. RISC-V Implementation Details

3. Cogit Internals

4. Clashes

5. Tooling and Port to RISC-V

6. Conclusion and Future Works

1



Introduction

Our main objective with RISC-V is to send Pharo to the moon:

� Experiment with dedicated VM custom instructions

� Dedicate hardware to security or media processing

2



Introduction

Our main objective with RISC-V is to send Pharo to the moon:

� Experiment with dedicated VM custom instructions

� Dedicate hardware to security or media processing

2



Big Picture

Hardware-based security enforcement

of JITed language runtimes...:

� Isolate parts of the VM

� Protect JIT Compilation and JIT

code

� Enforce strong properties through

hardware

... on RISC-V! extracted from JITGuard by

Frassetto et al.

3



Background



Pharo - Language

The Pharo language is:

� Smalltalk-inspired

� Purely object-oriented

� Dynamically-typed

� Control flow comes as

message passing

4



Pharo - VM and Images

The runtime environment is the Pharo VM, it is composed of:

� A threaded bytecode interpreter

� A linear non-optimising JIT compiler

� A generational scavenger garbage collector

5



Pharo - VM Compilation

The VM is compiled by:

� Writing the VM in a restricted Pharo language

� Transpiling the restricted VM to C (Slang)

� Compiling it with a C compiler along with routines and plugins

6



RISC-V - Presentation

RISC-V was born in Berkeley around 2010.

It is the most recent generation of RISC processors.

The ISA is:

� open-source - multiple cores and implementations are available

� extensible - opcode space available for dedicated hardware

� modular - wide range of application from IoT to HPC

7



RISC-V - Main Extensions

Name Description State Instructions

RV32I Base Integer Instruction Set - 32 bits Frozen 49

RV64I Base Integer Instruction Set - 64 bits Frozen 14

M Integer Multiplication and Division Frozen 8

A Atomic Instructions Frozen 11

F Single-Precision Floating-Point Frozen 25

D Double-Precision Floating-Point Frozen 25

G All of the above - -

C Compressed Instructions Frozen 36

J Dynamically Translated Languages Open undefined

T Packed-SIMD Instructions Open undefined

N User-Level Interrupts Open 3

Z* Cryptographic operations Open undefined

Table 1: RISC-V ISA and extensions 8



RISC-V - Open-source Processors

RISC-V cores come in different sizes and capacities from IoT to HPC:

Repositories in references!

9



RISC-V Implementation Details



RISC-V Features - Simpler Instructions

RISC-V honors the Reduced part of the instruction set, choosing

simplicity as a main design focus:

� One data addressing mode (adding a sign-extended 12-bit

immediates to a register)

� No shifts in arithmetic-logic operations

� Only general purpose registers (with the addition of PC and

hardwired 0)

� No complex call/return or stack instructions

Rationale

Common operations should be the norm, leaving complex instructions

at the charge of the developer. Simplification of the datapath!

10



RISC-V Features - Simpler Instructions

RISC-V honors the Reduced part of the instruction set, choosing

simplicity as a main design focus:

� One data addressing mode (adding a sign-extended 12-bit

immediates to a register)

� No shifts in arithmetic-logic operations

� Only general purpose registers (with the addition of PC and

hardwired 0)

� No complex call/return or stack instructions

Rationale

Common operations should be the norm, leaving complex instructions

at the charge of the developer. Simplification of the datapath!

10



RISC-V Features - Simpler Instructions

Impact

Redefinition of needed rare instructions. Increase of the number of

instructions.

11



RISC-V Features - Simpler Instructions

Pseudo-instruction li, available in RISC-V assembly is defined as:

� LLVM defines a complex recursive function to handle all immediate

values in the fewest instructions possible.

� GCC runs different encoding methods, attributes them a cost and

returns the best fitting choice.

12



RISC-V Features - Simpler Instructions

Pseudo-instruction li, available in RISC-V assembly is defined as:

� LLVM defines a complex recursive function to handle all immediate

values in the fewest instructions possible.

� GCC runs different encoding methods, attributes them a cost and

returns the best fitting choice.

12



RISC-V Features - Sign-extension

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-

diates are always sign-extended [...]. In particular, the sign bit

for all immediates is always in bit 31 of the instruction to speed

sign-extension circuitry

Rationale

A single convention makes manipulating immediates more reliable!

Architecture has a dedicated encoding/decoding circuitry.

Impact

Large immediates split through multiple instructions will require

bit manipulation and a check at the smallest unit size.

13



RISC-V Features - Sign-extension

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-

diates are always sign-extended [...]. In particular, the sign bit

for all immediates is always in bit 31 of the instruction to speed

sign-extension circuitry

Rationale

A single convention makes manipulating immediates more reliable!

Architecture has a dedicated encoding/decoding circuitry.

Impact

Large immediates split through multiple instructions will require

bit manipulation and a check at the smallest unit size.

13



RISC-V Features - Sign-extension

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-

diates are always sign-extended [...]. In particular, the sign bit

for all immediates is always in bit 31 of the instruction to speed

sign-extension circuitry

Rationale

A single convention makes manipulating immediates more reliable!

Architecture has a dedicated encoding/decoding circuitry.

Impact

Large immediates split through multiple instructions will require

bit manipulation and a check at the smallest unit size.

13



RISC-V Features - Sign-extension

Note: Also applies to the call pseudo-instruction - auipc/jalr

14



RISC-V Features - Sign-extension

Note: Also applies to the call pseudo-instruction - auipc/jalr

14



RISC-V Features - Condition Codes

Regarding conditional branches, RISC-V rejects:

� Condition codes of ARM/x86

� Delayed branch of MIPS

� Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the

result: beq, bne, bge and blt.

Rationale

Condition codes added extra state that is implicitly set by most

instructions. It complicates out-of-order execution processor design.

Impact

Architectures depending on x86 branching will have to adapt.

15



RISC-V Features - Condition Codes

Regarding conditional branches, RISC-V rejects:

� Condition codes of ARM/x86

� Delayed branch of MIPS

� Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the

result: beq, bne, bge and blt.

Rationale

Condition codes added extra state that is implicitly set by most

instructions. It complicates out-of-order execution processor design.

Impact

Architectures depending on x86 branching will have to adapt.

15



RISC-V Features - Condition Codes

Regarding conditional branches, RISC-V rejects:

� Condition codes of ARM/x86

� Delayed branch of MIPS

� Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the

result: beq, bne, bge and blt.

Rationale

Condition codes added extra state that is implicitly set by most

instructions. It complicates out-of-order execution processor design.

Impact

Architectures depending on x86 branching will have to adapt.

15



RISC-V Features - Overall

RISC-V presents the results of more than 25 years of RISC architecture

development and refinement to emphasize design choices:

� Simplicity - common path is the default path

� Performance - no implicit state

� Architecture/Implementation Isolation - no delayed branch/load

� Room for Growth - generous available opcode space (and hints)

16



Cogit Internals



Pharo - Cogit

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses

registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

17



Pharo - Cogit

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses

registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

18



Pharo - Cogit

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses

registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

19



Pharo - Cogit

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses

registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

20



Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

21



Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

� Condition codes setter Tst or Cmp

22



Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

� Condition codes setter Tst or Cmp

� Conditional Jumps

23



Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

� Condition codes setter Tst or Cmp

� Conditional Jumps

� Different addressing modes

24



Cogit Internals - IR

Rationale

Decisions on CogRTL design date from when x86 was the main

architecture.

Applications to ARMv7 or ARMv8 remained feasible as both provided

x86-compatible capabilities such as:

� Branching on flags

� Many addressing modes

� Bit manipulation operations

Unfortunately, it is a different story with RISC-V...

25



Cogit Internals - IR

Rationale

Decisions on CogRTL design date from when x86 was the main

architecture.

Applications to ARMv7 or ARMv8 remained feasible as both provided

x86-compatible capabilities such as:

� Branching on flags

� Many addressing modes

� Bit manipulation operations

Unfortunately, it is a different story with RISC-V...

25



Clashes



Literals and Inline Caching

Cogit needs to patch generated machine codes whether for (1) garbage

collection or (2) inline caches (mono-, poly- and megamorphic).

Impact

Patching literals requires to leave room for the biggest immediate value.

26



Literals and Inline Caching

Cogit needs to patch generated machine codes whether for (1) garbage

collection or (2) inline caches (mono-, poly- and megamorphic).

Impact

Patching literals requires to leave room for the biggest immediate value.

26



Literals and Inline Caching

Cogit needs to patch generated machine codes whether for (1) garbage

collection or (2) inline caches (mono-, poly- and megamorphic).

Impact

Patching literals requires to leave room for the biggest immediate value.

26



Intermediate Representation Mismatch

The close link between CogRTL and x86/ARMv8 expects a 1-1 mapping:

Impact

Mismatch between RISC-V and CogRTL when mapping IR and

machine code.

27



Intermediate Representation Mismatch

The close link between CogRTL and x86/ARMv8 expects a 1-1 mapping:

Impact

Mismatch between RISC-V and CogRTL when mapping IR and

machine code.
27



Reintroducing Condition Codes

One way to patch the issue is to reintroduce condition codes:

Impact

Reintroduction of a motivated ban from RISC-V. Increase of the

number of instructions.

28



Reintroducing Condition Codes

One way to patch the issue is to reintroduce condition codes:

Impact

Reintroduction of a motivated ban from RISC-V. Increase of the

number of instructions.

28



Peephole Optimization

Patching the IR to resolve the 1-1 mapping into a 2-1 :

CmpRR op1 op2 / JumpZero op3 becomes BrEqualRR op1 op2 op3

29



Reworking the IR

Is this the time to rework the IR? We could get:

� Higher level abstraction

� Complex optimizations

� Data/control flow analysis

This could take the form of V8’s sea of nodes or LuaJIT SSA!

Impact

Rewriting the IR is a consequent workload but should be beneficial

long-term!

30



Reworking the IR

Is this the time to rework the IR? We could get:

� Higher level abstraction

� Complex optimizations

� Data/control flow analysis

This could take the form of V8’s sea of nodes or LuaJIT SSA!

Impact

Rewriting the IR is a consequent workload but should be beneficial

long-term!

30



Tooling and Port to RISC-V



Testing Ecosystem - Test Harness

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn

31



Testing Ecosystem - Test Harness

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn

2. Simulating the whole VM in Pharo, CogVMSimulator

32



Testing Ecosystem - Test Harness

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn

2. Simulating the whole VM in Pharo, CogVMSimulator
3. Running on the architecture:

� Fedora Rawhide in QEMU

� BeagleV as the hardcore RISC-V SoC

� Rocket as the softcore RISC-V CPU

33



Tools - Machine Code Debugger

34



Tools - Instruction Simulator

The rich simulation environment coupled with the various hooks

Unicorn provide makes it very flexible:

Simulated Trampolines —

35



Tools - Instruction Simulator

The rich simulation environment coupled with the various hooks

Unicorn provide makes it very flexible:

Simulated Trampolines — Simulated Instructions

36



Port to RISC-V

As for now:

� Cogit is compliant with unit tests (1)!

� Rocket has been extended to support custom instructions!

� We still need to work our way through simulation (2) and

hardware execution (3)

However, regarding the toolchain:

� Every item remains in early/stable-ish development

� ISA being open-source also means various implementations

� Having access to reliable hardware is not easy

37



Conclusion and Future Works



Conclusion and Future Works

Takeaways:

� RISC-V is an open-source, modular ISA with bold design decisions

� Are clashes with CogRTL significant enough to suggest a

rewriting?

� Testing and tooling help dealing with issues at high level

Future works:

� What dedicated instruction would the VM benefit from?

� How to secure the VM using RISC-V?

� How to use a dedicated co-processor along the VM?

Thank you!

Contact: quentin.ducasse@ensta-bretagne.org

38



Conclusion and Future Works

Takeaways:

� RISC-V is an open-source, modular ISA with bold design decisions

� Are clashes with CogRTL significant enough to suggest a

rewriting?

� Testing and tooling help dealing with issues at high level

Future works:

� What dedicated instruction would the VM benefit from?

� How to secure the VM using RISC-V?

� How to use a dedicated co-processor along the VM?

Thank you!

Contact: quentin.ducasse@ensta-bretagne.org

38



Conclusion and Future Works

Takeaways:

� RISC-V is an open-source, modular ISA with bold design decisions

� Are clashes with CogRTL significant enough to suggest a

rewriting?

� Testing and tooling help dealing with issues at high level

Future works:

� What dedicated instruction would the VM benefit from?

� How to secure the VM using RISC-V?

� How to use a dedicated co-processor along the VM?

Thank you!

Contact: quentin.ducasse@ensta-bretagne.org

38



References i

Boom organization.

https://github.com/riscv-boom.

Cv32 chip.

https://github.com/openhwgroup/cv32e40p.

Cva6 chip.

https://github.com/openhwgroup/cva6.

Ibex chip.

https://github.com/lowRISC/ibex.

The RISC-V instruction set manual - volume I: Unprivileged ISA.

Document version 20191213.

https://github.com/riscv/riscv-isa-manual/releases/

download/Ratified-IMAFDQC/riscv-spec-20191213.pdf.

39

https://github.com/riscv-boom
https://github.com/openhwgroup/cv32e40p
https://github.com/openhwgroup/cva6
https://github.com/lowRISC/ibex
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf
https://github.com/riscv/riscv-isa-manual/releases/download/Ratified-IMAFDQC/riscv-spec-20191213.pdf


References ii

Rocket chip generator.

https://github.com/chipsalliance/rocket-chip.

D. Patterson and A. Waterman.

The RISC-V Reader: An Open Architecture Atlas.

Technical report, 2015.

40

https://github.com/chipsalliance/rocket-chip

	Background
	RISC-V Implementation Details
	Cogit Internals
	Clashes
	Tooling and Port to RISC-V
	Conclusion and Future Works

