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Introduction

Our main objective with RISC-V is to send Pharo to the moon:

� Experiment with dedicated VM custom instructions

� Dedicate hardware to security or media processing
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Big Picture

Hardware-based security enforcement

of JITed language runtimes...:

� Isolate parts of the VM

� Protect JIT Compilation and JIT

code

� Enforce strong properties through

hardware

... on RISC-V! extracted from JITGuard by

Frassetto et al.
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Background



Pharo - Language

The Pharo language is:

� Smalltalk-inspired

� Purely object-oriented

� Dynamically-typed

� Control flow comes as

message passing
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Pharo - VM and Images

The runtime environment is the Pharo VM, it is composed of:

� A threaded bytecode interpreter

� A linear non-optimising JIT compiler

� A generational scavenger garbage collector
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Pharo - VM Compilation

The VM is compiled by:

� Writing the VM in a restricted Pharo language

� Transpiling the restricted VM to C (Slang)

� Compiling it with a C compiler along with routines and plugins
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RISC-V - Presentation

RISC-V was born in Berkeley around 2010.

It is the most recent generation of RISC processors.

The ISA is:

� open-source - multiple cores and implementations are available

� extensible - opcode space available for dedicated hardware

� modular - wide range of application from IoT to HPC
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RISC-V - Main Extensions

Name Description State Instructions

RV32I Base Integer Instruction Set - 32 bits Frozen 49

RV64I Base Integer Instruction Set - 64 bits Frozen 14

M Integer Multiplication and Division Frozen 8

A Atomic Instructions Frozen 11

F Single-Precision Floating-Point Frozen 25

D Double-Precision Floating-Point Frozen 25

G All of the above - -

C Compressed Instructions Frozen 36

J Dynamically Translated Languages Open undefined

T Packed-SIMD Instructions Open undefined

N User-Level Interrupts Open 3

Z* Cryptographic operations Open undefined

Table 1: RISC-V ISA and extensions 8



RISC-V - Open-source Processors

RISC-V cores come in different sizes and capacities from IoT to HPC:

Repositories in references!
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RISC-V Implementation Details



RISC-V Features - Simpler Instructions

RISC-V honors the Reduced part of the instruction set, choosing

simplicity as a main design focus:

� One data addressing mode (adding a sign-extended 12-bit

immediates to a register)

� No shifts in arithmetic-logic operations

� Only general purpose registers (with the addition of PC and

hardwired 0)

� No complex call/return or stack instructions

Rationale

Common operations should be the norm, leaving complex instructions

at the charge of the developer. Simplification of the datapath!
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RISC-V Features - Simpler Instructions

Impact

Redefinition of needed rare instructions. Increase of the number of

instructions.
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RISC-V Features - Simpler Instructions

Pseudo-instruction li, available in RISC-V assembly is defined as:

� LLVM defines a complex recursive function to handle all immediate

values in the fewest instructions possible.

� GCC runs different encoding methods, attributes them a cost and

returns the best fitting choice.

12



RISC-V Features - Simpler Instructions

Pseudo-instruction li, available in RISC-V assembly is defined as:

� LLVM defines a complex recursive function to handle all immediate

values in the fewest instructions possible.

� GCC runs different encoding methods, attributes them a cost and

returns the best fitting choice.

12



RISC-V Features - Sign-extension

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-

diates are always sign-extended [...]. In particular, the sign bit

for all immediates is always in bit 31 of the instruction to speed

sign-extension circuitry

Rationale

A single convention makes manipulating immediates more reliable!

Architecture has a dedicated encoding/decoding circuitry.

Impact

Large immediates split through multiple instructions will require

bit manipulation and a check at the smallest unit size.
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RISC-V Features - Sign-extension

Note: Also applies to the call pseudo-instruction - auipc/jalr
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RISC-V Features - Condition Codes

Regarding conditional branches, RISC-V rejects:

� Condition codes of ARM/x86

� Delayed branch of MIPS

� Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the

result: beq, bne, bge and blt.

Rationale

Condition codes added extra state that is implicitly set by most

instructions. It complicates out-of-order execution processor design.

Impact

Architectures depending on x86 branching will have to adapt.
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RISC-V Features - Overall

RISC-V presents the results of more than 25 years of RISC architecture

development and refinement to emphasize design choices:

� Simplicity - common path is the default path

� Performance - no implicit state

� Architecture/Implementation Isolation - no delayed branch/load

� Room for Growth - generous available opcode space (and hints)
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Cogit Internals



Pharo - Cogit

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses

registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:
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Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:
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Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

� Condition codes setter Tst or Cmp

� Conditional Jumps

� Different addressing modes
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Cogit Internals - IR

Rationale

Decisions on CogRTL design date from when x86 was the main

architecture.

Applications to ARMv7 or ARMv8 remained feasible as both provided

x86-compatible capabilities such as:

� Branching on flags

� Many addressing modes

� Bit manipulation operations

Unfortunately, it is a different story with RISC-V...
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Clashes



Literals and Inline Caching

Cogit needs to patch generated machine codes whether for (1) garbage

collection or (2) inline caches (mono-, poly- and megamorphic).

Impact

Patching literals requires to leave room for the biggest immediate value.
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Intermediate Representation Mismatch

The close link between CogRTL and x86/ARMv8 expects a 1-1 mapping:

Impact

Mismatch between RISC-V and CogRTL when mapping IR and

machine code.
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Reintroducing Condition Codes

One way to patch the issue is to reintroduce condition codes:

Impact

Reintroduction of a motivated ban from RISC-V. Increase of the

number of instructions.
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Peephole Optimization

Patching the IR to resolve the 1-1 mapping into a 2-1 :

CmpRR op1 op2 / JumpZero op3 becomes BrEqualRR op1 op2 op3
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Reworking the IR

Is this the time to rework the IR? We could get:

� Higher level abstraction

� Complex optimizations

� Data/control flow analysis

This could take the form of V8’s sea of nodes or LuaJIT SSA!

Impact

Rewriting the IR is a consequent workload but should be beneficial

long-term!
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Tooling and Port to RISC-V



Testing Ecosystem - Test Harness

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn
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Testing Ecosystem - Test Harness

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn

2. Simulating the whole VM in Pharo, CogVMSimulator
3. Running on the architecture:

� Fedora Rawhide in QEMU

� BeagleV as the hardcore RISC-V SoC

� Rocket as the softcore RISC-V CPU
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Tools - Machine Code Debugger
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Tools - Instruction Simulator

The rich simulation environment coupled with the various hooks

Unicorn provide makes it very flexible:

Simulated Trampolines —
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Tools - Instruction Simulator

The rich simulation environment coupled with the various hooks

Unicorn provide makes it very flexible:

Simulated Trampolines — Simulated Instructions
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Port to RISC-V

As for now:

� Cogit is compliant with unit tests (1)!

� Rocket has been extended to support custom instructions!

� We still need to work our way through simulation (2) and

hardware execution (3)

However, regarding the toolchain:

� Every item remains in early/stable-ish development

� ISA being open-source also means various implementations

� Having access to reliable hardware is not easy
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Conclusion and Future Works



Conclusion and Future Works

Takeaways:

� RISC-V is an open-source, modular ISA with bold design decisions

� Are clashes with CogRTL significant enough to suggest a

rewriting?

� Testing and tooling help dealing with issues at high level

Future works:

� What dedicated instruction would the VM benefit from?

� How to secure the VM using RISC-V?

� How to use a dedicated co-processor along the VM?

Thank you!

Contact: quentin.ducasse@ensta-bretagne.org
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