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Our main objective with RISC-V is to send-Phare-to-the-meon:

e Experiment with dedicated VM custom instructions

e Dedicate hardware to security or media processing



Picture

Hardware-based security enforcement
of JITed language runtimes...:

¢ Isolate parts of the VM

e Protect JIT Compilation and JIT
code

e Enforce strong properties through
hardware

. on RISC-V!
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Background



The Pharo language is:
e Smalltalk-inspired
e Purely object-oriented
e Dynamically-typed

e Control flow comes as
message passing

exampleWithNumber: x

<aMethodAnnotation>

[y |

true & false not & (nil isNil)

ifFalse: [ self halt ].

y := self size + super size

#($a #a 'a' 1 1.0)

do: [ :each | Transcript
show: (each class name);
show: (each printString);
show: ' '1].
X<y



- VM and Images

The runtime environment is the Pharo VM, it is composed of:

e A threaded bytecode interpreter
e A linear non-optimising JIT compiler

e A generational scavenger garbage collector

Architecture oS Pharo VM Pharo image

x86-64 Windows Bytecode Interpreter

ARMvV7/8 Linux JIT Compiler

(RISC-V) MacOS Garbage Collector




Pharo - VM Compilation

The VM is compiled by:

e Writing the VM in a restricted Pharo language
e Transpiling the restricted VM to C (Slang)
e Compiling it with a C compiler along with routines and plugins

VM written in a
restricted Pharo

JIT Compiler

Bytecode Interpreter

Garbage Collector

Transpiled to C
using Slang

Production
VM in C

Routines

Plugins

Compiled using
Y GCC or Clang

Pharo environment

Executable




RISC-V - Presentation

RISC-V was born in Berkeley around 2010.

It is the most recent generation of RISC processors.

The ISA is:

e open-source - multiple cores and implementations are available
e extensible - opcode space available for dedicated hardware

e modular - wide range of application from loT to HPC



RISC-V - Main Extensions

Name Description State Instructions
RV32l Base Integer Instruction Set - 32 bits  Frozen 49
RV641 Base Integer Instruction Set - 64 bits  Frozen 14

M Integer Multiplication and Division Frozen 8

A Atomic Instructions Frozen 11

F Single-Precision Floating-Point Frozen 25

D Double-Precision Floating-Point Frozen 25

G All of the above - -

C Compressed Instructions Frozen 36

J Dynamically Translated Languages Open undefined

T Packed-SIMD Instructions Open undefined

N User-Level Interrupts Open 3

z* Cryptographic operations Open undefined

Table 1: RISC-V ISA and extensions



RISC-V - Open-source Pro

RISC-V cores come in different sizes and capacities from loT to HPC:

Rocket BOOM
7-stage

F-?ngzgeé Out-of-Order
RV64GC

4-stage
RV32IMFC
2-stage
RV32IMCB 6-stage
RV64IMAC
Ibex CV32E40P CVAG6 HERO

Repositories in references!



RISC-V Implementation Details



RISC-V Features - Simpler Instructions ENSTA
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RISC-V honors the Reduced part of the instruction set, choosing
simplicity as a main design focus:

e One data addressing mode (adding a sign-extended 12-bit
immediates to a register)
e No shifts in arithmetic-logic operations

e Only general purpose registers (with the addition of PC and
hardwired 0)

e No complex call/return or stack instructions

10
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RISC-V honors the Reduced part of the instruction set, choosing
simplicity as a main design focus:

e One data addressing mode (adding a sign-extended 12-bit
immediates to a register)
e No shifts in arithmetic-logic operations

e Only general purpose registers (with the addition of PC and
hardwired 0)

e No complex call/return or stack instructions

Rationale

Common operations should be the norm, leaving complex instructions
at the charge of the developer. Simplification of the datapath!

10



RISC-V Features - Simpler Instructions

Impact

Redefinition of needed rare instructions. Increase of the number of

instructions.

# Rotate left with shift amount in register

sll rd, rsl, rshamt #
sub temp, zero, rshamt #
srl temp, rsl, temp #
or rd, rd, temp #

# Software overflow check

add to, tl1, t2 #
slti t3, t2, 0 #
slt  t4, to, tl #
bne t3, t4, overflow #

x[rsl] << rshamt

get the negative count
x[rsl] >> (xlen - rshamt)
or between (1) and (2)

genuine addition

t3 = t2's sign

t4 = sum smaller than t1?
if t3 != t4, overflow!

11



RISC-V Features - Simpler Instructions

Pseudo-instruction 1i, available in RISC-V assembly is defined as:

|| rd, immediate x[rd] = immediate
Load Immediate. Pseudoinstruction, RV32I and RV641.

Loads a constant into x[rd], using as few instructions as possible. For RV32I, it expands to
lui and/or addi; for RV64L, it’s as long as lui, addi, slli, addi, slli, addi, slli, addi.
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RISC-V Features - Simpler Instructions

Pseudo-instruction 1i, available in RISC-V assembly is defined as:

|| rd, immediate x[rd] = immediate
Load Immediate. Pseudoinstruction, RV32I and RV641.

Loads a constant into x[rd], using as few instructions as possible. For RV32I, it expands to
lui and/or addi; for RV64L, it’s as long as lui, addi, slli, addi, slli, addi, slli, addi.

e LLVM defines a complex recursive function to handle all immediate
values in the fewest instructions possible.

e GCC runs different encoding methods, attributes them a cost and
returns the best fitting choice.

12
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RISC-V Features - Sign-extension o e

As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-
diates are always sign-extended [...]. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed

sign-extension circuitry

13
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As extracted from the RISC-V specifications [5]:

Except for the 5-bit immediates used in CSR instructions, imme-
diates are always sign-extended [...]. In particular, the sign bit
for all immediates is always in bit 31 of the instruction to speed
sign-extension circuitry

Rationale
A single convention makes manipulating immediates more reliable!
Architecture has a dedicated encoding/decoding circuitry.

Large immediates split through multiple instructions will require
bit manipulation and a check at the smallest unit size.

13



RISC-V Features - Sign-extension

11 t0, 0x3800800800800800

lui t0, 14337 # 0x3801
addiw  t0, t0, -2047 # OX7FF
slli to, to, 12 #

addi  t0, t0, -2047 # Ox7FF
slli  to, to, 12 #

addi  t0, t0, -2047 # OX7FF
slli to, to, 12 #

addi  t0, t0, -2048 # 0x800

‘ | lui | ‘ addi | | addi | ‘ addi | | addi
A A A A

should NOT be sign-extended
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RISC-V Features - Sign-extension

11 t0, 0x3800800800800800

lut t0, 14337 # 0x3801
addiw t0, t0, -2047 # OX7FF
sl t0, t0, 12 #
addi t0, t0, -2047 # Ox7FF
s1li to, tO, 12 #
addi t0, t0, -2047 # OX7FF
sl t0, t0, 12 #
addi t0, tO, -2048 # 0x800
‘ | lui | ‘ addi | | addi | ‘ addi | | addi

should NOT be sign-extended

Note: Also applies to the call pseudo-instruction - auipc/jalr

14



RISC-V Features - Condition Codes

Regarding conditional branches, RISC-V rejects:

¢ Condition codes of ARM/x86
e Delayed branch of MIPS

e Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the
result: beq, bne, bge and blt.

15
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Regarding conditional branches, RISC-V rejects:

¢ Condition codes of ARM/x86
e Delayed branch of MIPS

e Loop instructions of x86

Instead, it provides a way to compare two registers and branch on the
result: beq, bne, bge and blt.

Rationale

Condition codes added extra state that is implicitly set by most
instructions. It complicates out-of-order execution processor design.

Impact

Architectures depending on x86 branching will have to adapt.

15



RISC-V Features - Overall

RISC-V presents the results of more than 25 years of RISC architecture
development and refinement to emphasize design choices:

Simplicity - common path is the default path

Performance - no implicit state

Architecture/Implementation Isolation - no delayed branch/load

Room for Growth - generous available opcode space (and hints)

16



Cogit Internals




Pharo - Cogit

Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses
registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

Compilation Steps

Bytecode Scanning

Bytecodes —>»] f > Machine

Code

Metadata Extraction

Step Objectives

17
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Compilation Steps
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T T
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Code

Generate IR
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Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses
registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

Compilation Steps

Bytecode Scanning > Bytecode Parsing > Code Generation

i T T .
Bytecodes —>»] f ! ! > M(a:‘c)r&ge

Generate IR Concretize IR

Metadata Extraction in CogRTL in Machine Code

Step Objectives
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Pharo - Cogit ENSTA
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Cogit is Pharo’s JIT Compiler is linear, non-optimizing and uses
registers fixed ahead-of-time.

It processes bytecodes through a three-steps process:

ISA agnostic Compilation Steps

Bytecode Scanning > Bytecode Parsing H»| Code Generation

i T T .
Bytecodes —>»] f ! ! > M(a:‘c)r&ge

Generate IR Concretize IR

Metadata Extraction in CogRTL in Machine Code

Step Objectives

20



Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

Call, CallFull, CallRr,

MoveRR, MoveMwrR, MoveX32rR,

JumpZero, JumpNonNegative,

PopR, PushR,

AndCgR, 0OrCgR, TstCgR,

AddRR, CmpRR, MulRR,

LogicalShiftRightRR, ArithmeticShiftLeftRR,

21
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Call, CallFull, CallRr,

MoveRR, MoveMwrR, MoveX32rR,

JumpZero, JumpNonNegative,

PopR, PushR,

AndCgR, OrCqR, TstCqR,

AddRR, CmpRR, MulRR,

LogicalShiftRightRR, ArithmeticShiftLeftRR,

e Condition codes setter Tst or Cmp
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Cogit Internals - IR

Cogit Intermediate Representation called CogRTL is derived from x86:

Call, CallFull, CallRr,

MoveRR, MoveMwrR, MoveX32rR,

JumpZero, JumpNonNegative,

PopR, PushR,

AndCgR, 0OrCgR, TstCqR,

AddRR, CmpRR, MulRR,

LogicalShiftRightRR, ArithmeticShiftLeftRR,

e Condition codes setter Tst or Cmp
e Conditional Jumps

e Different addressing modes

24



Cogit Internals - IR ENSTA
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Rationale
Decisions on CogRTL design date from when x86 was the main
architecture.

Applications to ARMv7 or ARMv8 remained feasible as both provided
x86-compatible capabilities such as:

e Branching on flags
e Many addressing modes

e Bit manipulation operations

25
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Rationale
Decisions on CogRTL design date from when x86 was the main
architecture.

Applications to ARMv7 or ARMv8 remained feasible as both provided
x86-compatible capabilities such as:

e Branching on flags
e Many addressing modes

e Bit manipulation operations

Unfortunately, it is a different story with RISC-V...

25
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Literals and Inline Caching ENSTA
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Cogit needs to patch generated machine codes whether for (1) garbage
collection or (2) inline caches (mono-, poly- and megamorphic).

26
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collection or (2) inline caches (mono-, poly- and megamorphic).

Impact

Patching literals requires to leave room for the biggest immediate value.
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Literals and Inline Caching

BRETA

Cogit needs to patch generated machine codes whether for (1) garbage
collection or (2) inline caches (mono-, poly- and megamorphic).

Patching literals requires to leave room for the biggest immediate value.

Inline literals Out-of-line literals
Generated Generated
Machine Code Machine Code
Literal 1 Reference to Literal 1
Reference to Literal 2 Literals
Literal 2 R Manager
Literal 1
Literal 2

26



Intermediate Representation Mismatch ENSTA
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The close link between CogRTL and x86/ARMv8 expects a I-1 mapping:

# CogRTL instructions
cogit CmpR: ClassReg R: TempReg
cogit JumpNonZero: (Label 2)

# ARMv8 output
cmp rl, r22
b.ne 48

# RISC-V wanted output
bne rl, r22, 48

27



Intermediate Representation Mismatch ENSTA
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The close link between CogRTL and x86/ARMv8 expects a I-1 mapping:

# CogRTL instructions
cogit CmpR: ClassReg R: TempReg
cogit JumpNonZero: (Label 2)

# ARMv8 output
cmp rl, r22
b.ne 48

# RISC-V wanted output
bne rl, r22, 48

Impact

Mismatch between RISC-V and CogRTL when mapping IR and

machine code.
27



Reintroducing Condition Codes ENSTA
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One way to patch the issue is to reintroduce condition codes:

cogit CmpR: ArgOReg R: ReceilverReg

sub t3, s8, a3 seqz t5, t5
slti t1, a3, 1 sltu t6, s8, t3
st t2, t3, s8 slti t4, t3, 0

xor t5, t1, t2 seqz t3, t3

28
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One way to patch the issue is to reintroduce condition codes:

cogit CmpR: ArgOReg R: ReceilverReg

sub t3, s8, a3 seqz t5, t5
slti t1, a3, 1 sltu t6, s8, t3
st t2, t3, s8 slti t4, t3, 0
xor t5, t1, t2 seqz t3, t3

Impact

Reintroduction of a motivated ban from RISC-V. Increase of the
number of instructions.

28



Patching the IR to resolve the 1I-1 mapping into a 2-1:

newBranchOpcode := nextInstruction opcode caseOf: {
[JumpZero] -> [BrEqualRR].
[JumpNonZero] -> [BrNotEqualRR].
.1

opcode caseOf: {

[CmpRR] -> [newBranchLeft := operands at: 1.
newBranchRight := operands at: 0.
opcode := Label].

[CmpCgR] -> [newBranchLeft := operands at: 1.
newBranchRight := TempReg.
opcode := MoveCgR.
operands at: 1 put: TempReg].

L

CmpRR opl op2 / JumpZero op3 becomes BrEqualRR opl op2 op3
29
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Is this the time to rework the IR? We could get:

e Higher level abstraction
o Complex optimizations

e Data/control flow analysis

This could take the form of V8’s sea of nodes or LuaJIT SSA!

30
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Is this the time to rework the IR? We could get:

e Higher level abstraction
o Complex optimizations

e Data/control flow analysis

This could take the form of V8’s sea of nodes or LuaJIT SSA!
Impact

Rewriting the IR is a consequent workload but should be beneficial
long-term!

30



Tooling and Port to RISC-V




Testing Ecosystem - Test Harness

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn

Pharo VM

1
\

A
=)
N

Heap

JIT «|Instruction
Code | 7" Simulator
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Testing Ecosystem - Test Harness BER'EIT%IQ

Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn
2. Simulating the whole VM in Pharo, CogVMSimulator

N
o

\

o~

Pharo VM !

i
!
LT «|Instruction
e i Code | 7" Simulator
1
1
1

1
\

A
=)
N

R R BB

32



Testing Ecosystem - Test Harness ENSTA
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Pharo VM development uses several simulation and testing levels:

1. Unit-testing with an instruction simulator, Unicorn
2. Simulating the whole VM in Pharo, CogVMSimulator
3. Running on the architecture:

e Fedora Rawhide in QEMU

e BeagleV as the hardcore RISC-V SoC

e Rocket as the softcore RISC-V CPU

G
| €)) ——
i | Pharo VM =~
1 f (1)
| \
i QEMU ! i
| ! — |
! Hardcore [« Heap I e »|Instruction] i
i ! Code ] Simulator |
|| softcore | | ! i
| |
| ’ o
| H |
| ]
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Tools - Machine Code Debugger
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x-o

Address

Name
ceCaptureCStackPointers
ceEnterCogCodePopRece.
cecallcogCodepopReceiv
ceCallCogCodePopReceiv
cePrimRetumEnterCogCo
cePrimRetumEnterCogCo
ceCallCogCodepopReceiv
cecallCogCodepopReceiv
cecallPiCoArgs
ceCallPICIATgs
ceCallPiC2Args
sendoargsTrampoline
sendlargsTrampoline
sendzargsTrampoline
send3argsTrampoline
cecPICHissTrampoline
cePiCAbortTrampoline.
ceMethodabortTrampolin
ceStoreCheckTrampoline.
cestoreTrampoline
methodZoneBase

Disassemble Trampoline

m ClassReg  TempReg
JumpNonze (PushR 1 F1

tabel 3 37
PushR  ReceiverRes
PushR  ArgOR:

g
MoveRAw FPReg  16rTFFFFFFF
MoveRAw SPReg  1GrTFFFEFEE
MoveRAw  LinkReg  16rTFFFFFEF

MoveAbR  16rTFFFFFFF SendNuman

MoveRR  SendNumr|ClassReg
Classheg.

MoveRAb  ClassReg  16rTFFFFFEF

MoveltwiR 1620/32  ClassReg  TempReg

Movecw

MoveRXwrR TempReg  SendNumar ClassReg
MoveCqR 0

q mpReg
MoveRAw TempReg  16rTFFFFFEF

Step

Name  OpL op2 op3
MovecqR 0 ReceiverRes:
PushR  LinkReg
call 161000835/
lignmenthcs
Label 1 a
ndcarr 7 ReceiverResiTempReg.
JumpNonZe (Label 237/
Movelwr 0 ReceiverResiTempReg.
NACQR  16r3FFFFF/a TempReg.
Nop
Nop
Label 2

1611003FC

Jumpto

VM Debugger
Asu Bytes
Subits, 56,7 163316 xa
stitlsT,1 A1613 16
St2,6,% H16B316 6

itd, 53,0 #1693 161 x10
seqzi3,3  A16r13 16 a1
beqz15,-116 #16E3"161 | x12
addisp,sp, BH16r13"161 | x13
sdss,0fp) H{16023"16 | x14
addisp,sp, B#{16r13"161 | x15
sdas,0fsp) #162316 16
sds0, T6(s108 16023 161 | a7
sdsp, 384(SICH1623" 161 | 18
sdra, 3601041623 161 | x15
auipctd,0  H1697"161 | 220
1610,368(t0) #{16:63 161 21
1sp,000) #1636t | 22
aipctd,0  AIEST I 23
1610,364(10) #[16:63"161 | 28
0010 HI6316E x2S
1bu 5, 304(s1#{16183 161
misTse #1693 161
addits,s7,1 #{16r13"16 | 08
it 1,0 A1613 16 20
SHRB1 A6 16 0
rorts, R #1633 16 3L
sltut6, 1,57 416183 16

stite, 3,0 #160316 L
msnE A1603 e R
@Bt A1603 16, B

Disassemble at PC

A Name Machine Alias Smaltalk Alss

il

varbase

sign
overflow
cany

Value 4 Pointer Address.
fowss

5 16r143€F8s
260" 16n143€F%0
a6 160143878
160 1601436720
UG SP 16rI43EFAS
260 161143780
“L6rF00E 16r1a3€FB8
168000 16n1436FCO
‘168000 160143FCS
168000 161143EFD0
168000 16r143EFD8
U6rB00C | PP 16rI43EFED
168000 16n143€FEs
168000 1601438650
160" 1601438675
160 1611437000
260 161437008
260" 160143010
60 16n143018
1611000 160143020
16r1s" 1601437028
62 1601437030
A6TFFE 161437038
160" 16143040
ey 161437048
160" 16n143¢050
160" 1601437055
160 161437060
260 161437068
2610 1601436070
260"

0,
setspio

161238000
160
16110001
161108088
16r1249388

16rAABBCCDD
161238000

1611080cBS
161238000

Refresh Stack
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Tools - Instruction Simulator

The rich simulation environment coupled with the various hooks
Unicorn provide makes it very flexible:

®

UC_MEMORY_ERROR

Pharo Simulation

v Environment

w
T v
%E I 4<1>‘Instruction
oo T simulator
E é‘ Heap Code Slm\:kato
[

=

®

Simulated Trampolines —
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Tools - Instruction Simulator ENSTA
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The rich simulation environment coupled with the various hooks
Unicorn provide makes it very flexible:

® ®

UC_MEMORY_ERROR

UC_UNKNOWN_INSTRUCTION_ERROR
aro Simulation aro Simulation
Ph Simulati Ph Simulati
Environment Environment
Y Y
w n
T T C
%E T 4<1>‘Instruction % .g T Cl «|Instruction
=3 | 7| Simulator S < | 7| Simulator
22 AT Code 22 LRI Code
£ E A E & A
@ 'g nc

Simulated Trampolines — Simulated Instructions
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Port to RISC-V ENSTA
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As for now:

e Cogit is compliant with unit tests (1)!

e Rocket has been extended to support custom instructions!

e We still need to work our way through simulation (2) and
hardware execution (3)

However, regarding the toolchain:

e Every item remains in early/stable-ish development
e ISA being open-source also means various implementations

e Having access to reliable hardware is not easy

37
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Conclusion and Future Works o e

Takeaways:

e RISC-V is an open-source, modular ISA with bold design decisions

e Are clashes with CogRTL significant enough to suggest a
rewriting?

e Testing and tooling help dealing with issues at high level
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Conclusion and Future Works o e

Takeaways:

e RISC-V is an open-source, modular ISA with bold design decisions

e Are clashes with CogRTL significant enough to suggest a
rewriting?

e Testing and tooling help dealing with issues at high level

Future works:

e What dedicated instruction would the VM benefit from?
e How to secure the VM using RISC-V?

e How to use a dedicated co-processor along the VM?

Thank you!

Contact: quentin.ducasse@ensta-bretagne.org
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